其中
p
r
o
x
β
ρ
2
prox_{\beta\rho_2}
proxβρ2是对先验约束
β
ρ
2
\beta\rho_2
βρ2的近端梯度下降算子,一般用一个网络来拟合。本文用的是如下网络。所以说利用MAE,其实就是利用MAE的方法来训练一个encoder来提取特征。文章用cnn做一个encoder decoder的网络,然后将输入图像用随机gamma校正进行数据增强后用三通道的max提取illumination maps后切分为不重叠的patch,随机mask掉一些patch,训练一个对illumination的inpainting模型,丢掉decoder,剩下的encoder用来放到下图的网络结构中。其实这样搞已经和MAE没多大关系了,没有注意力的MAE就是个普通的inpainting模型,所以这里其实只是用illumination inpainting任务预训练了一个encoder而已:
R模块用的是类似的公式,只是网络就简单的得多,两层卷积加一层relu:
N模块也是两层卷积加一层relu:
后面就是对估计出来的L进行增强,和KinD一样,训练的时候先用GT的L的均值除以暗图的L的均值得出一个
ε
\varepsilon
εconcatenate到L中(测试则直接指定一个预设值),进一个unet预测增亮后的L,同时也要把L R N都送进另一个unet预测修复后的R。修复后的R和增强后的L相乘得到增强结果I。