目录

主要思路:
用 in 记录每一门课程剩余的先修课程个数,当剩余先修课程个数为0时,将该课程加入到队列q中。
每修队列q中的课程,以该课程作为先修课程的所有课程,其剩余先修课程个数减1;
不断将剩余先修课程数为0的课程加入到队列q中,当队列为空时,若修的课程数等于总课程数,则返回true,否则返回false;
- #include
- #include
- #include
-
- class Solution {
- public:
- bool canFinish(int numCourses, std::vector
int >>& prerequisites) { - std::vector
int>> out; // 存储每一个先修课程对应的课程 - std::vector<int> in; // 存储每一个课程对应的剩余先修课程的个数
- std::queue<int> q; // 存储可以修的课程
-
- out.resize(numCourses);
- in.resize(numCourses);
-
- // 初始化
- for(auto pair : prerequisites){
- int cur = pair[0]; // 当前课程
- int pre = pair[1]; // 当前课程的先修课程
- out[pre].push_back(cur); // 初始化out
- in[cur]++;
- }
-
- // 选取可以直接修的课程加入到队列q中
- for(int i = 0; i < numCourses; i++){
- if(in[i] == 0) q.push(i);
- }
-
- int num = 0; // 已经修过的课程数
- while(!q.empty()){
- int tmp = q.front(); // 修弹出的课程
- q.pop();
- num++;
- // 以tmp作为先修课程的课程,其剩余的先修课程数减1
- for(auto course : out[tmp]){
- in[course] --;
- if(in[course] == 0) q.push(course); // course没有需要先修的课程了,因此可以加入到队列q中
- }
- }
- if(num == numCourses) return true;
- else return false;
- }
- };
-
- int main(int argc, char* argv[]){
- // numCourses = 2, prerequisites = [[1,0],[0,1]]
- std::vector
int>> test = {{1, 0}, {0, 1}}; - int numCourses = 2;
- Solution S1;
- bool res = S1.canFinish(numCourses, test);
- if(res) std::cout << "true" << std::endl;
- else std::cout << "false" << std::endl;
- return 0;
- }

主要思路:
参考之前的笔记:前缀树的实现

主要思路:
基于随机化的快排(即随机选取基准元素)划分数组,其时间复杂度为O(n);
根据第K个最大的元素在哪一个数组,继续递归随机化快排,直到找到第K个最大的元素。
- #include
- #include
- #include
-
- class Solution {
- public:
- int findKthLargest(std::vector<int>& nums, int k){
- return quickSelect(nums, k);
- }
-
- int quickSelect(std::vector<int>& nums, int k){
- std::vector<int> large;
- std::vector<int> equal;
- std::vector<int> less;
-
- // 随机选取基准元素
- int pivot = nums[rand() % nums.size()]; // 返回[0, nums.size()-1]范围内的一个随机数
- for(int num : nums){
- if(num > pivot) large.push_back(num);
- else if(num == pivot) equal.push_back(num);
- else less.push_back(num);
- }
-
- // large, equal, less
- // 第k大的元素在large中
- if(k <= large.size()) return quickSelect(large, k);
- // 第k大的元素在less中
- else if(k > (nums.size() - less.size())) return quickSelect(less, k-(nums.size() - less.size()));
- else return pivot;
- }
- };
-
- int main(int argc, char *argv[]){
- // [3, 2, 1, 5, 6, 4], k = 2
- std::vector<int> test = {3, 2, 1, 5, 6, 4};
- int k = 2;
- Solution S1;
- int res = S1.findKthLargest(test, k);
- std::cout << res << std::endl;
- return 0;
- }

主要思路:
基于动态规划,dp[i][j]表示以(i, j)为右下角,所构成正方形的最大边长。
状态转移方程: dp[i][j] = std::min(dp[i-1][j-1], std::min(dp[i-1][j], dp[i][j-1])) + 1;
具体推导参考: 统计全为 1 的正方形子矩阵
- #include
- #include
-
- class Solution {
- public:
- int maximalSquare(std::vector
char >>& matrix) { - // dp[i][j]表示以(i, j)作为右下角构成正方形的最大边长
- std::vector
int>> dp(matrix.size(), std::vector<int>(matrix[0].size(), 0)); - // 初始化
- int max = 0;
- for(int i = 0; i < matrix.size(); i++){
- if(matrix[i][0] == '1'){
- dp[i][0] = 1;
- max = 1;
- }
- }
- for(int j = 0; j < matrix[0].size(); j++){
- if(matrix[0][j] == '1'){
- dp[0][j] = 1;
- max = 1;
- }
- }
- for(int i = 1; i < matrix.size(); i++){
- for(int j = 1; j < matrix[0].size(); j++){
- if(matrix[i][j] == '1'){
- dp[i][j] = std::min(dp[i-1][j-1], std::min(dp[i-1][j], dp[i][j-1])) + 1;
- }
- max = std::max(max, dp[i][j]);
- }
- }
- return max * max; // 返回面积
- }
- };
-
- int main(int argc, char *argv[]){
- // matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
- std::vector
char>> test = {{'1', '0', '1', '0', '0'}, {'1', '0', '1', '1', '1'}, - {'1', '1', '1', '1', '1'}, {'1', '0', '0', '1', '0'}};
- Solution S1;
- int res = S1.maximalSquare(test);
- std::cout << res << std::endl;
- return 0;
- }

主要思路:
递归交换左右子树即可。
- #include
- #include
- #include
-
- struct TreeNode {
- int val;
- TreeNode *left;
- TreeNode *right;
- TreeNode() : val(0), left(nullptr), right(nullptr) {}
- TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
- TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
- };
-
- class Solution {
- public:
- TreeNode* invertTree(TreeNode* root) {
- return dfs(root);
- }
-
- TreeNode* dfs(TreeNode* root){
- if(root == nullptr) return nullptr;
- TreeNode* left = dfs(root->right);
- TreeNode* right = dfs(root->left);
- root->left = left;
- root->right = right;
- return root;
- }
- };
-
- int main(int argc, char *argv[]){
- // root = [4, 2, 7, 1, 3, 6, 9]
- TreeNode *Node1 = new TreeNode(4);
- TreeNode *Node2 = new TreeNode(2);
- TreeNode *Node3 = new TreeNode(7);
- TreeNode *Node4 = new TreeNode(1);
- TreeNode *Node5 = new TreeNode(3);
- TreeNode *Node6 = new TreeNode(6);
- TreeNode *Node7 = new TreeNode(9);
-
- Node1->left = Node2;
- Node1->right = Node3;
- Node2->left = Node4;
- Node2->right = Node5;
- Node3->left= Node6;
- Node3->right = Node7;
-
- Solution S1;
- TreeNode *res = S1.invertTree(Node1);
- // 层次遍历打印
- std::queue
q; - q.push(res);
- while(!q.empty()){
- TreeNode* top = q.front();
- q.pop();
- std::cout << top->val << " ";
- if(top->left != nullptr) q.push(top->left);
- if(top->right != nullptr) q.push(top->right);
- }
- std::cout << std::endl;
- return 0;
- }

主要思路:
基于快慢指针,将链表划分为两部分,判断两部分是否相同即可。
其中第一部分为链表的前半部分,在快慢指针遍历的时候需要重构链表,将指针前指。
- #include
- #include
-
- struct ListNode {
- int val;
- ListNode *next;
- ListNode() : val(0), next(nullptr) {}
- ListNode(int x) : val(x), next(nullptr) {}
- ListNode(int x, ListNode *next) : val(x), next(next) {}
- };
-
- class Solution {
- public:
- bool isPalindrome(ListNode* head) {
- // 1 2 2 1
- // 1 2 1 2 1
- ListNode* slow = head;
- ListNode* fast = head->next;
- ListNode* pre = nullptr;
- ListNode* next = nullptr;
- while(fast != nullptr){
- // 前指
- next = slow->next;
- slow->next = pre;
- pre = slow;
- slow = next;
-
- fast = fast->next;
- if(fast == nullptr){
- break;
- }
- fast = fast->next;
- if(fast == nullptr){
- slow = slow->next;
- }
- }
- while(slow != nullptr && pre != nullptr){
- if(slow->val != pre->val) return false;
- slow = slow->next;
- pre = pre->next;
- }
- return true;
- }
- };
-
- int main(int argc, char *argv[]){
- // head = [1, 2, 1, 2, 1]
- ListNode *Node1 = new ListNode(1);
- ListNode *Node2 = new ListNode(2);
- ListNode *Node3 = new ListNode(1);
- ListNode *Node4 = new ListNode(2);
- ListNode *Node5 = new ListNode(1);
-
- Node1->next = Node2;
- Node2->next = Node3;
- Node3->next = Node4;
- Node4->next = Node5;
-
- Solution S1;
- bool res = S1.isPalindrome(Node1);
- if(res) std::cout << "true" << std::endl;
- else std::cout << "false" << std::endl;
-
- return 0;
- }

主要思路:
经典二叉数递归搜索。之前笔记分析过很多次了,主要思想就是递归找到目标节点,返回即可。
- #include
- #include
-
- struct TreeNode {
- int val;
- TreeNode *left;
- TreeNode *right;
- TreeNode(int x) : val(x), left(NULL), right(NULL) {}
- };
-
- class Solution {
- public:
- TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
- return dfs(root, p, q);
- }
- TreeNode* dfs(TreeNode* root, TreeNode* p, TreeNode* q){
- if(root == nullptr || root == p || root == q) return root;
- TreeNode *left = dfs(root->left, p, q);
- TreeNode *right = dfs(root->right, p, q);
- if(left != nullptr && right != nullptr) return root;
- if(left != nullptr && right == nullptr) return left;
- else return right;
- }
- };
-
- int main(int argc, char argv[]){
- // root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
- TreeNode* Node1 = new TreeNode(3);
- TreeNode* Node2 = new TreeNode(5);
- TreeNode* Node3 = new TreeNode(1);
- TreeNode* Node4 = new TreeNode(6);
- TreeNode* Node5 = new TreeNode(2);
- TreeNode* Node6 = new TreeNode(0);
- TreeNode* Node7 = new TreeNode(8);
- TreeNode* Node8 = new TreeNode(7);
- TreeNode* Node9 = new TreeNode(4);
-
- Node1->left = Node2;
- Node1->right = Node3;
- Node2->left = Node4;
- Node2->right = Node5;
- Node3->left = Node6;
- Node3->right = Node7;
- Node5->left = Node8;
- Node5->right = Node9;
-
- Solution S1;
- TreeNode *res = S1.lowestCommonAncestor(Node1, Node2, Node3);
- std::cout << res->val << std::endl;
- return 0;
- }

主要思路:
遍历两遍,第一遍求解L[i],L[i]表示第i位左边所有数的乘积;第二遍求解R[i],R[i]表示第i位右边所有数的乘积。
- #include
- #include
-
- class Solution {
- public:
- std::vector<int> productExceptSelf(std::vector<int>& nums) {
- // 先计算L[i], L[i]表示第i位左边所有数的乘积
- std::vector<int> res(nums.size(), 0);
- res[0] = 1;
- for(int i = 1; i < nums.size(); i++){
- res[i] = res[i-1] * nums[i-1];
- }
- // 再计算R[i], R[i]表示第i位右边所有数的乘积
- int R = 1;
- for(int i = nums.size() - 1; i >= 0; i--){
- res[i] = res[i] * R;
- R = R*nums[i];
- }
- return res;
- }
- };
-
- int main(int argc, char argv[]){
- // nums = [1, 2, 3, 4]
- std::vector<int> test = {1, 2, 3, 4};
- Solution S1;
- std::vector<int> res = S1.productExceptSelf(test);
- for(int num : res) std::cout << num << " ";
- std::cout << std::endl;
- return 0;
- }

主要思路:
经典单调队列,二刷一次过!!
- #include
- #include
- #include
-
- class Solution {
- public:
- std::vector<int> maxSlidingWindow(std::vector<int>& nums, int k) {
- std::deque<int> max;
- std::vector<int> res;
- for(int i = 0; i < k; i++){
- if(max.empty()) max.push_back(nums[i]);
- else{
- while(!max.empty() && nums[i] > max.back()){ // 弹出不可能成为最大值的值
- max.pop_back();
- }
- max.push_back(nums[i]);
- }
- }
- for(int i = k; i < nums.size(); i++){
- res.push_back(max.front());
- int left_val = nums[i - k];
- if(left_val == max.front()){ // 判断当前离开窗口的值是否等于队头的值
- max.pop_front();
- }
- while(!max.empty() && nums[i] > max.back()){ // 弹出比当前准备进队值要小的元素
- max.pop_back();
- }
- max.push_back(nums[i]);
- }
- res.push_back(max.front());
- return res;
- }
- };
-
- int main(int argc, char argv[]){
- // nums = [1, 3, -1, -3, 5, 3, 6, 7], k = 3
- int k = 3;
- std::vector<int> test = {1, 3, -1, -3, 5, 3, 6, 7};
- Solution S1;
- std::vector<int> res = S1.maxSlidingWindow(test, k);
- for(auto num : res){
- std::cout << num << " ";
- }
- std::cout << std::endl;
- return 0;
- }

主要思路:
从右上角开始搜索,当matrix[x][y] > target 时,y--;当matrix[x][y] < target时,x++;当matrix[x][y] == target时,返回true;
- #include
- #include
-
- class Solution {
- public:
- bool searchMatrix(std::vector
int >>& matrix, int target) { - int m = matrix.size(), n = matrix[0].size();
- // 从右上角开始搜索
- int x = 0, y = n - 1;
- while(x < m && y >= 0){
- if(matrix[x][y] == target) return true;
- else if(matrix[x][y] > target) y--;
- else x++; // matrix[x][y] < target
- }
- return false;
- }
- };
-
- int main(int argc, char* argv[]){
- // matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
- std::vector
int>> test = {{1, 4, 7, 11, 15}, {2, 5, 8, 12, 19}, - {3, 6, 9, 12, 19}, {10, 13, 14, 17, 24}, {18, 21, 23, 26, 30}};
- int target = 5;
- Solution S1;
- bool res = S1.searchMatrix(test, target);
- if(res) std::cout << "true" << std::endl;
- else std::cout << "false" << std::endl;
- return 0;
- }