• 如何在 Keras 中开发用于序列到序列预测的编码器-解码器模型


    link

    from random import randint
    from numpy import array
    from numpy import argmax
    from numpy import array_equal
    from keras.utils import to_categorical
    from keras.models import Model
    from keras.layers import Input
    from keras.layers import LSTM
    from keras.layers import Dense
    
    # generate a sequence of random integers
    def generate_sequence(length, n_unique):
    	return [randint(1, n_unique-1) for _ in range(length)]
    
    # prepare data for the LSTM
    def get_dataset(n_in, n_out, cardinality, n_samples):
    	X1, X2, y = list(), list(), list()
    	for _ in range(n_samples):
    		# generate source sequence
    		source = generate_sequence(n_in, cardinality)
    		# define padded target sequence
    		target = source[:n_out]
    		target.reverse()
    		# create padded input target sequence
    		target_in = [0] + target[:-1]
    		# encode
    		src_encoded = to_categorical([source], num_classes=cardinality)
    		tar_encoded = to_categorical([target], num_classes=cardinality)
    		tar2_encoded = to_categorical([target_in], num_classes=cardinality)
    		# store
    		X1.append(src_encoded)
    		X2.append(tar2_encoded)
    		y.append(tar_encoded)
    	return array(X1), array(X2), array(y)
    
    # returns train, inference_encoder and inference_decoder models
    def define_models(n_input, n_output, n_units):
    	# define training encoder
    	encoder_inputs = Input(shape=(None, n_input))
    	encoder = LSTM(n_units, return_state=True)
    	encoder_outputs, state_h, state_c = encoder(encoder_inputs)
    	encoder_states = [state_h, state_c]
    	# define training decoder
    	decoder_inputs = Input(shape=(None, n_output))
    	decoder_lstm = LSTM(n_units, return_sequences=True, return_state=True)
    	decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
    	decoder_dense = Dense(n_output, activation='softmax')
    	decoder_outputs = decoder_dense(decoder_outputs)
    	model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
    	# define inference encoder
    	encoder_model = Model(encoder_inputs, encoder_states)
    	# define inference decoder
    	decoder_state_input_h = Input(shape=(n_units,))
    	decoder_state_input_c = Input(shape=(n_units,))
    	decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
    	decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
    	decoder_states = [state_h, state_c]
    	decoder_outputs = decoder_dense(decoder_outputs)
    	decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states)
    	# return all models
    	return model, encoder_model, decoder_model
    
    # generate target given source sequence
    def predict_sequence(infenc, infdec, source, n_steps, cardinality):
    	# encode
    	#print(source)
    	state = infenc.predict(source.reshape([1,6,51]))
    	# start of sequence input
    	target_seq = array([0.0 for _ in range(cardinality)]).reshape(1, 1, cardinality)
    	# collect predictions
    	output = list()
    	for t in range(n_steps):
    		# predict next char
    		yhat, h, c = infdec.predict([target_seq] + state)
    		# store prediction
    		output.append(yhat[0,0,:])
    		# update state
    		state = [h, c]
    		# update target sequence
    		target_seq = yhat
    	return array(output)
    
    # decode a one hot encoded string
    def one_hot_decode(encoded_seq):
    	return [argmax(vector) for vector in encoded_seq]
    
    # configure problem
    n_features = 50 + 1
    n_steps_in = 6
    n_steps_out = 3
    # define model
    train, infenc, infdec = define_models(n_features, n_features, 128)
    train.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    # generate training dataset
    X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 100000)
    print(X1.shape,X2.shape,y.shape)
    # train model
    train.fit([X1.reshape([-1,6,51]), X2.reshape([-1,3,51])], y.reshape([-1,3,51]), epochs=1)
    
    # evaluate LSTM
    total, correct = 100, 0
    for _ in range(total):
    	X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 1)
    	target = predict_sequence(infenc, infdec, X1, n_steps_out, n_features)
    	if array_equal(one_hot_decode(y[0]), one_hot_decode(target)):
    		correct += 1
    print('Accuracy: %.2f%%' % (float(correct)/float(total)*100.0))
    # spot check some examples
    for _ in range(10):
    	X1, X2, y = get_dataset(n_steps_in, n_steps_out, n_features, 1)
    	target = predict_sequence(infenc, infdec, X1, n_steps_out, n_features)
    	print('X=%s y=%s, yhat=%s' % (one_hot_decode(X1[0]), one_hot_decode(y[0]), one_hot_decode(target)))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
  • 相关阅读:
    Adobe Premiere Pro 和 After Effects 安装出错的解决路径
    c++ || 内存管理
    动态内存管理
    模式分类与“组件协作模式”
    合肥工业大学计算机网络实验一
    【DZ模板】价值288克米设计APP手机版DZ模板 数据本地化+完美使用
    java计算机毕业设计科技专业师生沟通平台源码+数据库+lw文档+系统
    wireshark使用情况与网口调试记录
    C语言中的程序环境和预处理
    rest参数
  • 原文地址:https://blog.csdn.net/luoganttcc/article/details/133775810