• ArduPilot开源飞控之AP_Baro_SITL


    1. 源由

    鉴于ArduPilot开源飞控之AP_Baro中涉及Sensor Driver有以下总线类型:

    1. I2C
    2. Serial UART
    3. CAN
    4. SITL //模拟传感器(暂时并列放在这里)

    ArduPilot之开源代码Sensor Drivers设计front-end / back-end分层设计思路,AP_Baro主要描述的是front-end。

    为了AP_Baro代码研读的完整性,就继续简单的整理下下针对AP_Baro_SITL研读和理解。

    2. back-end抽象类

    AP_Baro_Backend驱动层需实现方法:

    • void update()
    • static AP_Baro_Backend *probe(AP_Baro &baro, AP_HAL::OwnPtr dev)

    注:通常来说使用ChibiOS的都有定时器,如果没有定时器,可以使用void accumulate(void)来实现传感器的数据定时获取。

    class AP_Baro_Backend
    {
    public:
        AP_Baro_Backend(AP_Baro &baro);
        virtual ~AP_Baro_Backend(void) {};
    
        // each driver must provide an update method to copy accumulated
        // data to the frontend
        virtual void update() = 0;
    
        // accumulate function. This is used for backends that don't use a
        // timer, and need to be called regularly by the main code to
        // trigger them to read the sensor
        virtual void accumulate(void) {}
    
        void backend_update(uint8_t instance);
    
        //  Check that the baro valid by using a mean filter.
        // If the value further that filtrer_range from mean value, it is rejected.
        bool pressure_ok(float press);
        uint32_t get_error_count() const { return _error_count; }
    
    #if AP_BARO_MSP_ENABLED
        virtual void handle_msp(const MSP::msp_baro_data_message_t &pkt) {}
    #endif
    
    #if AP_BARO_EXTERNALAHRS_ENABLED
        virtual void handle_external(const AP_ExternalAHRS::baro_data_message_t &pkt) {}
    #endif
    
        /*
          device driver IDs. These are used to fill in the devtype field
          of the device ID, which shows up as BARO_DEVID* parameters to
          users.
         */
        enum DevTypes {
            DEVTYPE_BARO_SITL     = 0x01,
            DEVTYPE_BARO_BMP085   = 0x02,
            DEVTYPE_BARO_BMP280   = 0x03,
            DEVTYPE_BARO_BMP388   = 0x04,
            DEVTYPE_BARO_DPS280   = 0x05,
            DEVTYPE_BARO_DPS310   = 0x06,
            DEVTYPE_BARO_FBM320   = 0x07,
            DEVTYPE_BARO_ICM20789 = 0x08,
            DEVTYPE_BARO_KELLERLD = 0x09,
            DEVTYPE_BARO_LPS2XH   = 0x0A,
            DEVTYPE_BARO_MS5611   = 0x0B,
            DEVTYPE_BARO_SPL06    = 0x0C,
            DEVTYPE_BARO_UAVCAN   = 0x0D,
            DEVTYPE_BARO_MSP      = 0x0E,
            DEVTYPE_BARO_ICP101XX = 0x0F,
            DEVTYPE_BARO_ICP201XX = 0x10,
            DEVTYPE_BARO_MS5607   = 0x11,
            DEVTYPE_BARO_MS5837   = 0x12,
            DEVTYPE_BARO_MS5637   = 0x13,
            DEVTYPE_BARO_BMP390   = 0x14,
        };
        
    protected:
        // reference to frontend object
        AP_Baro &_frontend;
    
        void _copy_to_frontend(uint8_t instance, float pressure, float temperature);
    
        // semaphore for access to shared frontend data
        HAL_Semaphore _sem;
    
        virtual void update_healthy_flag(uint8_t instance);
    
        // mean pressure for range filter
        float _mean_pressure; 
        // number of dropped samples. Not used for now, but can be usable to choose more reliable sensor
        uint32_t _error_count;
    
        // set bus ID of this instance, for BARO_DEVID parameters
        void set_bus_id(uint8_t instance, uint32_t id) {
            _frontend.sensors[instance].bus_id.set(int32_t(id));
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79

    3. 方法实现

    AP_Baro_SITL是一个模拟器件,其气压数据来源于模拟系统,对于模拟系统这里不展开,其传递参量的主要方式是全局变量_sitl->state.altitude

    3.1 AP_Baro_SITL

    实例初始化,注册一个定时回调函数。

    AP_Baro_SITL::AP_Baro_SITL
     └──> <_sitl != nullptr>
        ├──> _instance = _frontend.register_sensor();
        ├──> 
        │   └──> _frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER);
        ├──> set_bus_id(_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, 0, _instance, DEVTYPE_BARO_SITL));
        │
        │  /********************************************************************************
        │   * start periodic call back                                                     *
        │   ********************************************************************************/
        └──> hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Baro_SITL::_timer, void));
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    3.2 _timer

    定时模拟高度数据(这里不涉及温度的校准,但是做了一些模拟的噪音,比如:baro glitch/drift/noise/temperature/wind)。

    AP_Baro_SITL::_timer
     │  /********************************************************************************
     │   * 100Hz                                                                        *
     │   ********************************************************************************/
     ├──> const uint32_t now = AP_HAL::millis();
     ├──> <(now - _last_sample_time) < 10>
     │   └──> return;
     │
     ├──> _last_sample_time = now;
     ├──> float sim_alt = _sitl->state.altitude;
     ├──> <_sitl->baro[_instance].disable>
     │   └──> return;  // barometer is disabled
     │
     │  /********************************************************************************
     │   * Update simulated altitude                                                    *
     │   ********************************************************************************/
     │  // Noise for simulated altitude
     ├──> sim_alt += _sitl->baro[_instance].drift * now * 0.001f;
     ├──> sim_alt += _sitl->baro[_instance].noise * rand_float();
     │
     │  // add baro glitch
     ├──> sim_alt += _sitl->baro[_instance].glitch;
     │
     │  // add delay
     ├──> uint32_t best_time_delta = 200;  // initialise large time representing buffer entry closest to current time - delay.
     ├──> uint8_t best_index = 0;  // initialise number representing the index of the entry in buffer closest to delay.
     │
     │  // storing data from sensor to buffer
     ├──> = 10>  // store data every 10 ms.
     │   ├──> _last_store_time = now;
     │   ├──> <_store_index > _buffer_length - 1>  
     │   │   └──> _store_index = 0;  // reset buffer index if index greater than size of buffer
     │   │
     │   │  // if freezed barometer, report altitude to last recorded altitude
     │   ├──> <_sitl->baro[_instance].freeze == 1>
     │   │   └──> sim_alt = _last_altitude;
     │   ├──> < else >
     │   │   └──> _last_altitude = sim_alt;
     │   │
     │   ├──> _buffer[_store_index].data = sim_alt;  // add data to current index
     │   ├──> _buffer[_store_index].time = _last_store_time;  // add time_stamp to current index
     │   └──> _store_index = _store_index + 1;  // increment index
     │
     │  // return delayed measurement
     ├──> const uint32_t delayed_time = now - _sitl->baro[_instance].delay;  // get time corresponding to delay
     │
     │  // find data corresponding to delayed time in buffer
     ├──> 
     │   │  // find difference between delayed time and time stamp in buffer
     │   ├──> uint32_t time_delta = abs((int32_t)(delayed_time - _buffer[i].time));
     │   │  // if this difference is smaller than last delta, store this time
     │   └──> 
     │       ├──> best_index = i;
     │       └──> best_time_delta = time_delta;
     │
     ├──>   // only output stored state if < 200 msec retrieval error
     │   └──> sim_alt = _buffer[best_index].data;
     │
     │  /********************************************************************************
     │   * Temperature adjust                                                           *
     │   ********************************************************************************/
     ├──> 
     │   ├──> float sigma, delta, theta;
     │   ├──> AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
     │   ├──> float p = SSL_AIR_PRESSURE * delta;
     │   ├──> float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta);
     │   └──> temperature_adjustment(p, T);
     ├──> 
     │   ├──> float rho, delta, theta;
     │   ├──> AP_Baro::SimpleUnderWaterAtmosphere(-sim_alt * 0.001f, rho, delta, theta);
     │   ├──> float p = SSL_AIR_PRESSURE * delta;
     │   └──> float T = KELVIN_TO_C(SSL_AIR_TEMPERATURE * theta);
     │
     │  /********************************************************************************
     │   * add in correction for wind effects                                           *
     │   ********************************************************************************/
     ├──> p += wind_pressure_correction(_instance);
     │
     ├──> _recent_press = p;
     ├──> _recent_temp = T;
     └──> _has_sample = true;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81

    3.3 temperature_adjustment

    温度模拟修正。

    AP_Baro_SITL::temperature_adjustment
     ├──> const float tsec = AP_HAL::millis() * 0.001f;
     ├──> const float T_sensor = T + AP::sitl()->temp_board_offset;
     ├──> const float tconst = AP::sitl()->temp_tconst;
     ├──>  // time which past the equation below equals T_sensor within approx. 1E-9
     │   ├──> const float T0 = AP::sitl()->temp_start;
     │   └──> T = T_sensor - (T_sensor - T0) * expf(-tsec / tconst);
     ├──> < else >
     │   └──> T = T_sensor;
     ├──> const float baro_factor = AP::sitl()->temp_baro_factor;
     ├──> const float Tzero = 30.0f;  // start baro adjustment at 30C
     └──> 
         │  // this produces a pressure change with temperature that
         │  // closely matches what has been observed with a ICM-20789
         │  // barometer. A typical factor is 1.2.
         └──> p -= powf(MAX(T - Tzero, 0), baro_factor);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    3.4 wind_pressure_correction

    风力压强修正。

    AP_Baro_SITL::wind_pressure_correction
     ├──> const auto &bp = AP::sitl()->baro[instance];
     │
     │  // correct for static pressure position errors
     ├──> const Vector3f &airspeed_vec_bf = AP::sitl()->state.velocity_air_bf;
     │
     ├──> float error = 0.0;
     ├──> const float sqx = sq(airspeed_vec_bf.x);
     ├──> const float sqy = sq(airspeed_vec_bf.y);
     ├──> const float sqz = sq(airspeed_vec_bf.z);
     │
     │  // error for x
     ├──> 
     │   └──> error += bp.wcof_xp * sqx;
     ├──> < else >
     │   └──> error += bp.wcof_xn * sqx;
     │
     │  // error for y
     ├──> 
     │   └──> error += bp.wcof_yp * sqy;
     ├──> < else >
     │   └──> error += bp.wcof_yn * sqy;
     │
     │  // error for z
     ├──> 
     │   └──> error += bp.wcof_zp * sqz;
     ├──> < else >
     │   └──> error += bp.wcof_zn * sqz;
     │
     └──> return error * 0.5 * SSL_AIR_DENSITY * AP::baro().get_air_density_ratio();
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    3.5 update

    front-end / back-end数据更新。

    AP_Baro_SITL::update
     ├──> 
     │   └──> return;
     ├──> WITH_SEMAPHORE(_sem);
     ├──> _copy_to_frontend(_instance, _recent_press, _recent_temp);
     └──> _has_sample = false;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    4. 参考资料

    【1】ArduPilot开源飞控系统之简单介绍
    【2】ArduPilot之开源代码Task介绍
    【3】ArduPilot飞控启动&运行过程简介
    【4】ArduPilot之开源代码Library&Sketches设计
    【5】ArduPilot之开源代码Sensor Drivers设计

  • 相关阅读:
    八个解决你80%需求的CSS动画库
    桥梁安全在线监测预警系统解决方案
    编译器关键字解析
    万字 HashMap 详解,基础(优雅)永不过时
    Android CAN 简记
    Web3社交基础设施SBT
    python opencv 实现对二值化后的某一像素值做修改和mask叠加
    制造业仓库很乱,该如何有效的管理呢?
    算法通过村第十关-并归|黄金笔记|手撕并归排序
    # NUSTCTF(校外赛道)2022-wp
  • 原文地址:https://blog.csdn.net/lida2003/article/details/133773995