• 【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)


     💥💥💞💞欢迎来到本博客❤️❤️💥💥

    🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

    ⛳️座右铭:行百里者,半于九十。

    📋📋📋本文目录如下:🎁🎁🎁

    目录

    💥1 概述

    📚2 运行结果

    🎉3 参考文献

    🌈4 Matlab代码实现


    💥1 概述

    【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带

    本文介绍了一种交互式阈值二进制图像的方法。该方法可以应用于彩色或单色图像,并且允许用户通过滑块的方式以交互/手动的方式设置图像的阈值范围。

    阈值图像是一种二进制图像,可以用作其他图像的遮罩图像。在阈值范围内的像素将在中间图像中显示为二进制图像(黑/白),而原始图像的像素将在左侧图像中显示为遮罩(灰度或彩色)。用户可以通过设置最大和最小阈值来调整阈值范围,从而实现对图像的二值化处理。

    该方法的输入包括要开始的低阈值和高阈值,以及图像文件名或图像矩阵。可以处理的图像类型包括整数类型(如uint8、uint16等)和浮点类型(如单精度、双精度)。

    该方法的输出包括阈值范围和用于选择阈值的最后一个色带。用户可以根据自己的需求选择合适的阈值范围,并通过调整滑块来实现图像的二值化处理。

    通过使用交互式阈值二进制图像的方法,用户可以更加灵活地处理彩色或单色图像,并根据需要调整阈值范围,从而得到满足自己需求的二值化图像。该方法具有简单、直观的操作界面,适用于各种图像处理应用场景。

    📚2 运行结果

    部分代码:

    1. % Read in a standard MATLAB gray scale demo image.
    2. folder = fileparts(which('cameraman.tif')); % Determine where demo folder is (works with all versions).
    3. baseFileName = 'cameraman.tif';
    4. fullFileName = fullfile(folder, baseFileName);
    5. if ~exist(fullFileName, 'file')
    6. % File doesn't exist. Try it without the folder.
    7. % It might be able to find it in a folder off the search path.
    8. fullFileName = baseFileName;
    9. if ~exist(fullFileName, 'file')
    10. % Can't find it off the search path either.
    11. errorMessage = sprintf('Error: cannot find demo image %s', baseFileName);
    12. uiwait(msgbox(errorMessage));
    13. return;
    14. end
    15. end
    16. grayImage = imread(fullFileName);
    17. % Get the dimensions of the image. numberOfColorBands should be = 1.
    18. [rows, columns, numberOfColorBands] = size(grayImage);
    19. % Display the original gray scale image.
    20. subplot(2, 3, 1);
    21. imshow(grayImage, []);
    22. axis off;
    23. title('Original Grayscale Image', 'FontSize', fontSize);
    24. % Set up figure properties.
    25. set(gcf, 'Name', 'Thresholding Demo by ImageAnalyst', 'NumberTitle', 'off')
    26. set(gcf, 'Toolbar', 'none', 'Menu', 'none');
    27. set(gcf, 'Position', get(0,'Screensize')); % Enlarge figure to full screen.
    28. message = sprintf('Thresholding demo by ImageAnalyst.\n\nDo you want to use an integer image or a floating point image?');
    29. button = questdlg(message, 'Image Type?', 'Integer', 'Floating Point', 'Cancel', 'Integer');
    30. drawnow; % Refresh screen to get rid of dialog box remnants.
    31. if strcmpi(button, 'Cancel')
    32. close(gcf); % Get rid of window.
    33. return;
    34. end
    35. if strcmpi(button, 'Floating Point')
    36. % Convert to double in the range -5000 to + 15000
    37. % Get input min and max.
    38. minGL = double(min(grayImage(:)));
    39. maxGL = double(max(grayImage(:)));
    40. % Scale the image
    41. imageToThreshold = 20000 * mat2gray(grayImage) - 5000;
    42. % Verify them
    43. minDblGL = min(imageToThreshold(:));
    44. maxDblGL = max(imageToThreshold(:));
    45. fprintf('Before scaling, min gray level = %.1f, max gray level = %.1f\nAfter scaling, min gray level = %.1f, max gray level = %.1f\n', ...
    46. minGL, maxGL, minDblGL, maxDblGL);
    47. startingLowThreshold = -800;
    48. startingHighThreshold = 10400;
    49. % Get the histogram
    50. [pixelCount, grayLevels] = hist(imageToThreshold(:), 300);
    51. subplot(2, 3, 2);
    52. bar(grayLevels, pixelCount, 'BarWidth', 1, 'FaceColor', 'b');
    53. title('Histogram of Original Double Image', 'FontSize', fontSize);
    54. xlim([minDblGL, maxDblGL]); % Scale x axis manually.

    % Read in a standard MATLAB gray scale demo image.
    folder = fileparts(which('cameraman.tif')); % Determine where demo folder is (works with all versions).
    baseFileName = 'cameraman.tif';
    fullFileName = fullfile(folder, baseFileName);
    if ~exist(fullFileName, 'file')
        % File doesn't exist.  Try it without the folder.
        % It might be able to find it in a folder off the search path.
        fullFileName = baseFileName;
        if ~exist(fullFileName, 'file')
            % Can't find it off the search path either.
            errorMessage = sprintf('Error: cannot find demo image %s', baseFileName);
            uiwait(msgbox(errorMessage));
            return;
        end
    end
    grayImage = imread(fullFileName);
    % Get the dimensions of the image.  numberOfColorBands should be = 1.
    [rows, columns, numberOfColorBands] = size(grayImage);

    % Display the original gray scale image.
    subplot(2, 3, 1);
    imshow(grayImage, []);
    axis off;
    title('Original Grayscale Image', 'FontSize', fontSize);
    % Set up figure properties.
    set(gcf, 'Name', 'Thresholding Demo by ImageAnalyst', 'NumberTitle', 'off') 
    set(gcf, 'Toolbar', 'none', 'Menu', 'none');
    set(gcf, 'Position', get(0,'Screensize')); % Enlarge figure to full screen.

    message = sprintf('Thresholding demo by ImageAnalyst.\n\nDo you want to use an integer image or a floating point image?');
    button = questdlg(message, 'Image Type?', 'Integer', 'Floating Point', 'Cancel', 'Integer');
    drawnow;    % Refresh screen to get rid of dialog box remnants.
    if strcmpi(button, 'Cancel')
        close(gcf);    % Get rid of window.
        return;
    end
    if strcmpi(button, 'Floating Point')
        % Convert to double in the range -5000 to + 15000
        % Get input min and max.
        minGL = double(min(grayImage(:)));
        maxGL = double(max(grayImage(:)));
        % Scale the image
        imageToThreshold = 20000 * mat2gray(grayImage) - 5000;
        % Verify them
        minDblGL = min(imageToThreshold(:));
        maxDblGL = max(imageToThreshold(:));
        fprintf('Before scaling, min gray level = %.1f, max gray level = %.1f\nAfter scaling,  min gray level = %.1f, max gray level = %.1f\n', ...
            minGL, maxGL, minDblGL, maxDblGL);
        startingLowThreshold = -800;
        startingHighThreshold = 10400;
        % Get the histogram
        [pixelCount, grayLevels] = hist(imageToThreshold(:), 300);
        subplot(2, 3, 2); 
        bar(grayLevels, pixelCount, 'BarWidth', 1, 'FaceColor', 'b');
        title('Histogram of Original Double Image', 'FontSize', fontSize);
        xlim([minDblGL, maxDblGL]); % Scale x axis manually.

    🎉3 参考文献

    文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

    [1]龙建武,申铉京,陈海鹏.基于图像区域的交互式文本图像阈值分割算法[J].计算机研究与发展, 2012, 49(7):12.DOI:CNKI:SUN:JFYZ.0.2012-07-005.

    [2]龙建武申铉京陈海鹏.基于图像区域的交互式文本图像阈值分割算法[J].计算机研究与发展, 2012, 49(7):1420-1431.

    [3]兰红.多阈值优化的交互式医学图像分割方法[J].计算机科学, 2013, 40(9):4.DOI:10.3969/j.issn.1002-137X.2013.09.066.

    🌈4 Matlab代码实现

  • 相关阅读:
    【虹科新品】 HK-MR430&330绝对式光纤编码器(上)
    Ubuntu小知识总结
    完美的PopuWindow展示弹窗
    C++数据结构题:DS 顺序表--连续操作
    CSS 中背景background和img的区别和使用时机
    深度学习之基于Matlab卷积神经网络的英文数字验证码识别系统
    安卓手机磁盘空间不足怎样导出数据?
    C++奇迹之旅:深入思考拷贝构造函数
    Java中的集合类
    day2_redis缓存
  • 原文地址:https://blog.csdn.net/Ke_Yan_She/article/details/133379801