• TensorFlow入门(十、共享变量)


    使用tf.Variable方法创建变量

            使用tf.Variable方法创建变量时有两点需要注意:

            ①一般情况下,使用tf.Variable方法创建的变量都有作用域,也可叫做变量的可用性范围,即在变量所属的模型内,变量的名字是有效可用的。

            ②使用tf.Variable方法创建变量时,会生成一个新的变量。如果在一个模型中先后定义了两个名字相同的变量,那么后面那个变量是生效的,将覆盖第一个变量。

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. abc1 = tf.Variable(1.0,name = 'firstvar')
    4. print("abc1:",abc1.name)
    5. abc2 = tf.Variable(1.56,name = 'firstvar')
    6. print("abc2:",abc2.name)
    7. abc2 = tf.Variable(1.88,name = 'firstvar')
    8. print("abc2:",abc2.name)
    9. abc3 = tf.Variable(2.0)
    10. print("abc3:",abc3.name)
    11. abc4 = tf.Variable(3.0)
    12. print("abc4:",abc4.name)
    13. init = tf.global_variables_initializer()
    14. with tf.Session() as sess:
    15. sess.run(init)
    16. print("abc1 = ",abc1.eval())
    17. print("abc2 = ",abc2.eval())
    18. print("abc3 = ",abc3.eval())
    19. print("abc4 = ",abc4.eval())

    使用tf.get_variable方法创建变量

            在有些情况下,一个模型需要使用其他模型创建的变量,达到两个模型一起训练变量的效果。这时需要使用get_variable方法,以实现共享变量

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. abc1 = tf.Variable(1.0,name = 'firstvar')
    4. print("abc1:",abc1.name)
    5. abc2 = tf.Variable(1.56,name = 'firstvar')
    6. print("abc2:",abc2.name)
    7. abc2 = tf.Variable(1.88,name = 'firstvar')
    8. print("abc2:",abc2.name)
    9. abc3 = tf.Variable(2.0)
    10. print("abc3:",abc3.name)
    11. abc4 = tf.Variable(3.0)
    12. print("abc4:",abc4.name)
    13. get_abc2 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(6.6))
    14. print("get_abc2 = ",get_abc2.name)
    15. init = tf.global_variables_initializer()
    16. with tf.Session() as sess:
    17. sess.run(init)
    18. print("get_abc2 = ",get_abc2.eval())
    19. get_abc2 = tf.get_variable('firstvar1',[1],initializer = tf.constant_initializer(8.8))
    20. print("get_abc2 = ",get_abc2.name)
    21. init = tf.global_variables_initializer()
    22. with tf.Session() as sess:
    23. sess.run(init)
    24. print("get_abc2 = ",get_abc2.eval())

            简而言之,tf.Variable可以创建同名的变量,但是tf.get_variable创建同名变量会报错,所以在使用的时候,你用变量名去索引,tf.get_variable会得到唯一的值。

    在特定的作用域下获取变量

            使用get_variable创建两个同样名字的变量是行不通的。可以配合variable_scope(变量的作用域),创建两个同名的变量。

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. with tf.variable_scope('test1'):
    4. get_abc1 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(6.6))
    5. with tf.variable_scope('test2'):
    6. get_abc2 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(8.8))
    7. print("get_abc1:",get_abc1.name)
    8. print("get_abc2:",get_abc2.name)
    9. init = tf.global_variables_initializer()
    10. with tf.Session() as sess:
    11. sess.run(init)
    12. print("get_abc1:",get_abc1.eval())
    13. print("get_abc2:",get_abc2.eval())

    使用作用域中的reuse参数来实现共享变量功能

            variable_scope里有个reuse属性,当reuse = True时,表示使用已经定义过的变量。这时get_variable将不会再创建新的变量,而是去模型中在使用get_variable所创建过的变量中找与name相同的变量。

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. with tf.variable_scope('test1'):
    4. get_abc1 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(6.6))
    5. with tf.variable_scope('test2'):
    6. get_abc2 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(8.8))
    7. with tf.variable_scope('test1',reuse = True):
    8. get_abc3 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(9.6))
    9. with tf.variable_scope('test2',reuse = True):
    10. get_abc4 = tf.get_variable('firstvar',[1],initializer = tf.constant_initializer(9.8))
    11. print("get_abc1:",get_abc1.name)
    12. print("get_abc2:",get_abc2.name)
    13. print("get_abc3:",get_abc3.name)
    14. print("get_abc4:",get_abc4.name)
    15. init = tf.global_variables_initializer()
    16. with tf.Session() as sess:
    17. sess.run(init)
    18. print("get_abc1:",get_abc1.eval())
    19. print("get_abc2:",get_abc2.eval())
    20. print("get_abc3:",get_abc3.eval())
    21. print("get_abc4:",get_abc4.eval())

    共享变量的作用域与初始化

            使用get_variable方法获得变量时是可以初始化的。同样,在variable_scope中也可以初始化。并且如果variable_scope中有嵌套,还有继承功能,定义变量时,如果没有进行初始化,则TensorFlow会默认使用作用域的初始化方法对其初始化,并且作用域的初始化方法也有继承功能。

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. with tf.variable_scope("test1",initializer = tf.constant_initializer(6.6)):
    4. get_abc1 = tf.get_variable("firstvar",shape = [2],dtype = tf.float32)
    5. with tf.variable_scope("test2"):
    6. get_abc2 = tf.get_variable("firstvar",shape = [2],dtype = tf.float32)
    7. get_abc3 = tf.get_variable("secondvar",shape = [2],initializer = tf.constant_initializer(8.8))
    8. init = tf.global_variables_initializer()
    9. with tf.Session() as sess:
    10. sess.run(init)
    11. print("get_abc1 = ",get_abc1.eval())
    12. print("get_abc2 = ",get_abc2.eval())
    13. print("get_abc3 = ",get_abc3.eval())

    作用域与操作符的受限范围

            variable_scope还可以通过采用with variable_scope("name") as xxx的方式定义作用域,当使用这种方式时,所定义的作用域变量xxx将不再受到外围的scope所限制

            操作符不仅受到tf.name_scope作用域的限制,同时也受到tf.variable_scope作用域的限制。

    示例代码如下:

    1. import tensorflow.compat.v1 as tf
    2. tf.disable_v2_behavior()
    3. with tf.variable_scope("test1") as sp:
    4. get_abc1 = tf.get_variable("firstvar",[1])
    5. print("sp:",sp.name)
    6. print("get_abc1:",get_abc1.name)
    7. with tf.variable_scope("test2"):
    8. get_abc2 = tf.get_variable("firstvar",[1])
    9. with tf.variable_scope(sp) as sp1:
    10. get_abc3 = tf.get_variable("firstvar3",[1])
    11. print("sp1:",sp1.name)
    12. print("get_abc2:",get_abc2.name)
    13. print("get_abc3:",get_abc3.name)
    14. with tf.variable_scope("test3"):
    15. with tf.name_scope("ops"):
    16. v = tf.get_variable("var",[1])
    17. y = 3.0 + v
    18. print("v:",v.name)
    19. print("y.op:",y.op.name)

  • 相关阅读:
    Node学习笔记之Node简介
    vue3自定义全局Loading
    Kafka消息队列
    Dubbo API 笔记——Dubbo协议&最佳实践
    CyclicBarrier和CountDownLatch
    刷代码随想录有感(118):动态规划——打家劫舍II
    C++中的类、结构体、指针和引用
    【C++】迭代器
    【微服务】SpringBoot整合Resilience4j使用详解
    什么是嵌入式,单片机又是什么,两者有什么关联又有什么区别?
  • 原文地址:https://blog.csdn.net/Victor_Li_/article/details/133671212