• 【算法优选】 二分查找专题——壹


    😎前言

    二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列

    查找过程

    首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

    算法要求

    1.必须采用顺序存储结构。
    2.必须按关键字大小有序排列。

    比较次数

    计算公式:
    当顺序表有n个关键字时:
    查找失败时,至少比较a次关键字;
    查找成功时,最多比较关键字次数是b。
    注意:a,b,n均为正整数。

    算法复杂度

    二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果xa[n/2],则只要在数组a的右半部搜索x.
    时间复杂度即是while循环的次数。
    总共有n个元素,
    渐渐跟下去就是n,n/2,n/4,…n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
    由于你n/2^k取整后>=1
    即令n/2^k=1
    可得k=log2n,(是以2为底,n的对数)
    所以时间复杂度可以表示O(h)=O(log2n)

    🎋二分查找

    🚩题目描述:

    给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

    • 示例 1:
      输入: nums = [-1,0,3,5,9,12], target = 9
      输出: 4
      解释: 9 出现在 nums 中并且下标为 4

    • 示例 2:
      输入: nums = [-1,0,3,5,9,12], target = 2
      输出: -1
      解释: 2 不存在 nums 中因此返回 -1

    class Solution {
        public int search(int[] nums, int target) {
    
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    🚩算法流程:

    1. 定义 left , right 指针,分别指向数组的左右区间。
    2. 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
    • arr[mid] == target 说明正好找到,返回 mid 的值;
    • arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid -1 ,然后重复 2 过程;
    • arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid +1 ,然后重复 2 过程;
    1. 当 left 与 right 错开时,说明整个区间都没有这个数,返回 -1 。

    🚩代码实现:

    class Solution {
        public int search(int[] nums, int target) {
            // 初始化 left 与 right 指针
            int left = 0;
            int right = nums.length - 1;
            // 由于两个指针相交时,当前元素还未判断,因此需要取等号
            while (left <= right) {
                // 先找到区间的中间元素
                int mid = left + (right - left) / 2;
                // 分三种情况讨论
                if (nums[mid] == target) {
                    return mid;
                } else if (nums[mid] > target) {
                    right = mid - 1;
                } else {
                    left = mid + 1;
                }
            }
            // 如果程序⾛到这⾥,说明没有找到⽬标值,返回 -1
            return -1;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    🌴在排序数组中查找元素的第一个和最后一个位置

    🚩题目描述

    给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

    如果数组中不存在目标值 target,返回 [-1, -1]。

    你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

    • 示例 1:
      输入:nums = [5,7,7,8,8,10], target = 8
      输出:[3,4]

    • 示例 2:
      输入:nums = [5,7,7,8,8,10], target = 6
      输出:[-1,-1]

    • 示例 3:
      输入:nums = [], target = 0
      输出:[-1,-1]

    class Solution {
        public int[] searchRange(int[] nums, int target) {
    
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    🚩算法思路:

    ⽤的还是⼆分思想,就是根据数据的性质,在某种判断条件下将区间⼀分为⼆,然后舍去其中⼀个区间,然后再另⼀个区间内查找;

    ⽅便叙述,⽤ x 表⽰该元素, resLeft 表⽰左边界, resRight 表⽰右边界。

    📌寻找左边界思路:

    寻找左边界:

    • 我们注意到以左边界划分的两个区间的特点:

    左边区间 [left, resLeft - 1] 都是⼩于 x 的;

    右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的;

    因此,关于 mid 的落点,我们可以分为下⾯两种情况:

    • 当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid]

    • 当 mid 落在 [resLeft, right] 的区间的时候,也就是 arr[mid] >= target 。说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时更新 right 到 mid 的位置,继续在 [left, mid] 上寻找左边界

    由此,就可以通过⼆分,来快速寻找左边界;

    注意:这⾥找中间元素需要向下取整

    因为后续移动左右指针的时候:

    • 左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的;

    • 右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元素, left == 1 ,right == 2 , mid == 2 。更新区间之后, left,right,mid 的值没有改变,就会陷⼊死循环)。因此⼀定要注意,当 right = mid 的时候,要向下取整

    📌寻找右边界思路:

    寻右左边界:

    • ⽤ resRight 表⽰右边界;
    • 我们注意到右边界的特点:
      ▪ 左边区间(包括右边界) [left, resRight] 都是⼩于等于 x 的;
      ▪ 右边区间 [resRight+ 1, right] 都是⼤于 x 的;

    因此,关于 mid 的落点,我们可以分为下⾯两种情况:

    • 当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1]( mid 不可以舍去,因为有可能是最终结果)都是可以舍去的,此时更新left 到 mid 的位置;
    • 当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素
      是可以舍去的,此时更新 right 到 mid - 1 的位置;

    由此,就可以通过⼆分,来快速寻找右边界;

    注意:这⾥找中间元素需要向上取整。

    因为后续移动左右指针的时候:

    • 左指针: left = mid ,可能会原地踏步(⽐如:如果向下取整的话,如果剩下 1,2 两个元素, left == 1, right == 2,mid == 1 。更新区间之后, left,right,mid 的值没有改变,就会陷⼊死循环)。

    • 右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩⼩的;

    因此⼀定要注意,当 right = mid 的时候,要向下取整

    🚩代码实现

    class Solution {
        public int[] searchRange(int[] nums, int target) {
            int[] ret = new int[2];
            ret[0] = ret[1] = -1;
            // 处理边界情况
            if(nums.length == 0) {
                return ret;
            }
            // 1. ⼆分左端点
            int left = 0;
            int right = nums.length - 1;
            while(left < right) {
                int mid = left + (right - left) / 2;
                if(nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid;
                }
            }
            // 判断是否有结果
            if(nums[left] != target) {
                return ret;
            } else {
                ret[0] = right;
            }
            // 2. ⼆分右端点
            left = 0; 
            right = nums.length - 1;
            while(left < right) {
                int mid = left + (right - left + 1) / 2;
                if(nums[mid] <= target) {
                    left = mid;
                }else {
                    right = mid - 1;
                }
            }
            ret[1] = left;
            return ret;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    🌳搜索插入位置

    🚩题目描述

    给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

    请必须使用时间复杂度为 O(log n) 的算法。

    • 示例 1:
      输入: nums = [1,3,5,6], target = 5
      输出: 2

    • 示例 2:
      输入: nums = [1,3,5,6], target = 2
      输出: 1

    • 示例 3:
      输入: nums = [1,3,5,6], target = 7
      输出: 4

    class Solution {
        public int searchInsert(int[] nums, int target) {
    
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    🚩算法思路:

    1、分析插⼊位置左右两侧区间上元素的特点:

    设插⼊位置的坐标为 index ,根据插⼊位置的特点可以知道:

    • [left, index - 1] 内的所有元素均是⼩于 target 的;

    • [index, right] 内的所有元素均是⼤于等于 target 的。

    2、设 left 为本轮查询的左边界, right 为本轮查询的右边界。根据 mid 位置元素的信
    息,分析下⼀轮查询的区间:

    • 当 nums[mid] >= target 时,说明 mid 落在了 [index, right] 区间上,mid 左边包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [left,mid] 上。因此,更新 right 到 mid 位置,继续查找。
    • 当 nums[mid] < target 时,说明 mid 落在了 [left, index - 1] 区间上,mid 右边但不包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [mid + 1, right] 上。因此,更新 left 到 mid + 1 的位置,继续查找。

    3、 直到我们的查找区间的⻓度变为 1 ,也就是left == right 的时候, left 或者
    right 所在的位置就是我们要找的结果

    🚩代码实现:

        public int searchInsert(int[] nums, int target) {
            int left = 0;
            int right = nums.length - 1;
            while (left < right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] < target) {
                    left = mid + 1;
                } 
                else {
                    right = mid;
                }
            }
            // 特判⼀下第三种情况
            if (nums[right] < target) {
                return right + 1;
            }
            return right;
        }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    🎄x的平方根

    🚩题目描述

    给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

    由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

    注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

    • 示例 1:
      输入:x = 4
      输出:2
    • 示例 2:
      输入:x = 8
      输出:2
      解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。
    class Solution {
        public int mySqrt(int x) {
            
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    🚩算法思路:

    设 x 的平⽅根的最终结果为 index :

    分析 index 左右两次数据的特点:

    • [0, index] 之间的元素,平⽅之后都是⼩于等于 x 的;

    • [index + 1, x] 之间的元素,平⽅之后都是⼤于 x 的。

    因此可以使⽤⼆分查找算法。

    🚩代码实现:

    class Solution {
        public int mySqrt(int x) {
            long left = 1;
            long right = x;
            if(x < 1) {
                return 0;
            }
            while(left < right) {
                long mid = left + (right - left + 1)/2;
                if(mid*mid <= x) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            return (int)left;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    ⭕总结

    关于《【算法优选】 二分查找专题——壹》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

  • 相关阅读:
    初见JAVA —— 最基础的变量,选择,循环语句,数组,方法,输入与输出等
    msfvenom学习笔记
    【数据结构】一篇深入理解二叉树计算
    开源软件安全与应对策略探讨 - Java 机密计算技术应用实践
    01.02 环境搭建详细介绍
    Python中的自然语言处理和文本挖掘
    国内一些镜像源
    javaweb-SMBMS
    记录一次线上fullgc问题排查过程
    node开发微信群聊机器人第⑤章
  • 原文地址:https://blog.csdn.net/m0_71731682/article/details/133691091