Description
一个无限行的数字三角形,第 i 行有 i 个数。第一行的第一个数是 1 ,其他的数满足如下关系:如果用 F[i][j] 表示第 i 行的第 j 个数,那么 F[i][j]=A∗F[i−1][j]+B∗F[i−1][j−1] (不合法的下标的数为 0 )。
当 A=2,B=3 时的数字三角形的前 5 行为:
1
2 3
4 12 9
8 36 54 27
16 96 216 216 81
现在有 T 次询问,求 A=a,B=b 时数字三角形的第 n 行第 m 个数的值模 10^9+9 的结果。
Input
第一行为一个整数 T 。
接下一共 T 行,每行四个整数 a,b,n,m
Output
一共 T 行,每行一个整数,表示那个位置上的数的值。
Sample Input
2
2 3 3 3
3 1 4 1
Sample Output
9
27
Hint
n,t<=1e5;1<=m<=n; 0<=a,b<=1e9;
思路:
看例子:
1
A B
A^2 2*A*B B^2
A^3 3*A^2*B 3*A*B^2 B^3
我们可以看出答案是:
对于
,分母我们利用费马小定理求逆元。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include