(1)(2)(1),(2)同时成立,分别化简得
a
−
ϵ
<
y
n
<
a
+
ϵ
a-\epsilon数列的夹逼准则可以推广到函数的极限
若 x ∈ U ˚ ( x 0 ) x\in\mathring{U}(x_0) x∈U˚(x0)(或 ∣ x ∣ > M |x|>M ∣x∣>M)时, g ( x ) ⩽ f ( x ) ⩽ h ( x ) g(x)\leqslant{f(x)}\leqslant{h(x)} g(x)⩽f(x)⩽h(x)
并且 lim x → ∗ g ( x ) \lim\limits_{x\to{*}}g(x) x→∗limg(x)= lim x → ∗ h ( x ) = A \lim\limits_{x\to{*}}h(x)=A x→∗limh(x)=A;(其中 x → ∗ x\to{*} x→∗可以是 x → x 0 , x → ∞ x\to{x_0},x\to{\infin} x→x0,x→∞两种类型)
则 lim x → ∗ g ( x ) \lim\limits_{x\to{*}}g(x) x→∗limg(x)存在且等于 A A A
两个重要极限分别是经典的 0 / 0 和 1 ∞ 0/0和1^{\infin} 0/0和1∞型极限
a
n
−
b
n
=
(
a
−
b
)
∑
i
=
1
n
a
n
−
i
b
i
−
1
a^n-b^n=(a-b)\sum\limits_{i=1}^{n}a^{n-i}b^{i-1}
an−bn=(a−b)i=1∑nan−ibi−1;令
S
=
∑
i
=
1
n
a
n
−
i
b
i
−
1
S=\sum\limits_{i=1}^{n}a^{n-i}b^{i-1}
S=i=1∑nan−ibi−1(0),则
a
n
−
b
n
a^{n}-b^{n}
an−bn=
(
a
−
b
)
S
(a-b)S
(a−b)S
证明等价无穷小:
lim
x
→
0
x
+
1
n
−
1
\lim\limits_{x\to 0}\sqrt[n]{x+1}-1
x→0limnx+1−1
∼
\sim
∼
lim
x
→
0
x
n
\lim\limits_{x\to 0}\frac{x}{n}
x→0limnx,即,要证明
L
=
lim
x
→
0
x
+
1
n
−
1
1
n
x
=
1
L=\lim\limits_{x\to 0}\frac{\sqrt[n]{x+1}-1}{\frac{1}{n}x}=1
L=x→0limn1xnx+1−1=1 (1)
我们令:
则 L L L= lim x → 0 a − b c \lim\limits_{x\to{0}}\frac{a-b}{c} x→0limca−b
将上述
a
,
b
,
c
a,b,c
a,b,c代入(0):
S
S
S=
∑
i
=
1
n
(
(
x
+
1
)
1
n
)
n
−
i
(
1
)
i
−
1
\sum\limits_{i=1}^{n}({(x+1)^{\frac{1}{n}})}^{n-i}(1)^{i-1}
i=1∑n((x+1)n1)n−i(1)i−1=
∑
i
=
1
n
(
x
+
1
)
n
−
i
n
\sum\limits_{i=1}^{n}{(x+1)^{\frac{n-i}{n}}}
i=1∑n(x+1)nn−i
此时: L L L= lim x → 0 ( a − b ) S c S \lim\limits_{x\to 0}{\frac{(a-b)S}{cS}} x→0limcS(a−b)S= lim x → 0 x 1 n x S \lim\limits_{x\to 0}{\frac{x}{\frac{1}{n}xS}} x→0limn1xSx= lim x → 0 n S \lim\limits_{x\to 0}{\frac{n}{S}} x→0limSn= lim x → 0 n lim x → 0 S \frac{\lim\limits_{x\to{0}}{n}}{\lim\limits_{x\to{0}}{S}} x→0limSx→0limn= 1 1 1
从而(1)成立