• 目标检测算法改进系列之Backbone替换为RIFormer


    RIFormer简介

    Token Mixer是ViT骨干非常重要的组成成分,它用于对不同空域位置信息进行自适应聚合,但常规的自注意力往往存在高计算复杂度与高延迟问题。而直接移除Token Mixer又会导致不完备的结构先验,进而导致严重的性能下降。

    原文地址:RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer

    基于此,本文基于重参数机制提出了RepIdentityFormer方案以研究无Token Mixer的架构体系。紧接着,作者改进了学习架构以打破无Token Mixer架构的局限性并总结了5条指导方针。搭配上所提优化策略后,本文构建了一种极致简单且具有优异性能的视觉骨干,此外它还具有高推理效率优势。

    实验结果表明:通过合适的优化策略,网络结构的归纳偏置可以被集成进简单架构体系中。本文为后续优化驱动的高效网络设计提供了新的起点和思路。

    RIFormer结构图

    RIFormer代码实现

    # Copyright (c) OpenMMLab. All rights reserved.
    from typing import Sequence
    import torch
    import torch.nn as nn
    import numpy as np
    from mmcv.cnn.bricks import DropPath, build_activation_layer, build_norm_layer
    from mmengine.model import BaseModule
    
    __all__ = ['RIFormer']
    
    class Mlp(nn.Module):
        """Mlp implemented by with 1*1 convolutions.
    
        Input: Tensor with shape [B, C, H, W].
        Output: Tensor with shape [B, C, H, W].
        Args:
            in_features (int): Dimension of input features.
            hidden_features (int): Dimension of hidden features.
            out_features (int): Dimension of output features.
            act_cfg (dict): The config dict for activation between pointwise
                convolution. Defaults to ``dict(type='GELU')``.
            drop (float): Dropout rate. Defaults to 0.0.
        """
    
        def __init__(self,
                     in_features,
                     hidden_features=None,
                     out_features=None,
                     act_cfg=dict(type='GELU'),
                     drop=0.):
            super().__init__()
            out_features = out_features or in_features
            hidden_features = hidden_features or in_features
            self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
            self.act = build_activation_layer(act_cfg)
            self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
            self.drop = nn.Dropout(drop)
    
        def forward(self, x):
            x = self.fc1(x)
            x = self.act(x)
            x = self.drop(x)
            x = self.fc2(x)
            x = self.drop(x)
            return x
    
    class PatchEmbed(nn.Module):
        """Patch Embedding module implemented by a layer of convolution.
    
        Input: tensor in shape [B, C, H, W]
        Output: tensor in shape [B, C, H/stride, W/stride]
        Args:
            patch_size (int): Patch size of the patch embedding. Defaults to 16.
            stride (int): Stride of the patch embedding. Defaults to 16.
            padding (int): Padding of the patch embedding. Defaults to 0.
            in_chans (int): Input channels. Defaults to 3.
            embed_dim (int): Output dimension of the patch embedding.
                Defaults to 768.
            norm_layer (module): Normalization module. Defaults to None (not use).
        """
    
        def __init__(self,
                     patch_size=16,
                     stride=16,
                     padding=0,
                     in_chans=3,
                     embed_dim=768,
                     norm_layer=None):
            super().__init__()
            self.proj = nn.Conv2d(
                in_chans,
                embed_dim,
                kernel_size=patch_size,
                stride=stride,
                padding=padding)
            self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
    
        def forward(self, x):
            x = self.proj(x)
            x = self.norm(x)
            return x
    
    
    class Affine(nn.Module):
        """Affine Transformation module.
    
        Args:
            in_features (int): Input dimension.
        """
    
        def __init__(self, in_features):
            super().__init__()
            self.affine = nn.Conv2d(
                in_features,
                in_features,
                kernel_size=1,
                stride=1,
                padding=0,
                groups=in_features,
                bias=True)
    
        def forward(self, x):
            return self.affine(x) - x
    
    
    class RIFormerBlock(BaseModule):
        """RIFormer Block.
    
        Args:
            dim (int): Embedding dim.
            mlp_ratio (float): Mlp expansion ratio. Defaults to 4.
            norm_cfg (dict): The config dict for norm layers.
                Defaults to ``dict(type='GN', num_groups=1)``.
            act_cfg (dict): The config dict for activation between pointwise
                convolution. Defaults to ``dict(type='GELU')``.
            drop (float): Dropout rate. Defaults to 0.
            drop_path (float): Stochastic depth rate. Defaults to 0.
            layer_scale_init_value (float): Init value for Layer Scale.
                Defaults to 1e-5.
            deploy (bool): Whether to switch the model structure to
                deployment mode. Default: False.
        """
    
        def __init__(self,
                     dim,
                     mlp_ratio=4.,
                     norm_cfg=dict(type='GN', num_groups=1),
                     act_cfg=dict(type='GELU'),
                     drop=0.,
                     drop_path=0.,
                     layer_scale_init_value=1e-5,
                     deploy=False):
    
            super().__init__()
    
            if deploy:
                self.norm_reparam = build_norm_layer(norm_cfg, dim)[1]
            else:
                self.norm1 = build_norm_layer(norm_cfg, dim)[1]
                self.token_mixer = Affine(in_features=dim)
            self.norm2 = build_norm_layer(norm_cfg, dim)[1]
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = Mlp(
                in_features=dim,
                hidden_features=mlp_hidden_dim,
                act_cfg=act_cfg,
                drop=drop)
    
            # The following two techniques are useful to train deep RIFormers.
            self.drop_path = DropPath(drop_path) if drop_path > 0. \
                else nn.Identity()
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.norm_cfg = norm_cfg
            self.dim = dim
            self.deploy = deploy
    
        def forward(self, x):
            if hasattr(self, 'norm_reparam'):
                x = x + self.drop_path(
                    self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
                    self.norm_reparam(x))
                x = x + self.drop_path(
                    self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
                    self.mlp(self.norm2(x)))
            else:
                x = x + self.drop_path(
                    self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) *
                    self.token_mixer(self.norm1(x)))
                x = x + self.drop_path(
                    self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) *
                    self.mlp(self.norm2(x)))
            return x
    
        def fuse_affine(self, norm, token_mixer):
            gamma_affn = token_mixer.affine.weight.reshape(-1)
            gamma_affn = gamma_affn - torch.ones_like(gamma_affn)
            beta_affn = token_mixer.affine.bias
            gamma_ln = norm.weight
            beta_ln = norm.bias
            return (gamma_ln * gamma_affn), (beta_ln * gamma_affn + beta_affn)
    
        def get_equivalent_scale_bias(self):
            eq_s, eq_b = self.fuse_affine(self.norm1, self.token_mixer)
            return eq_s, eq_b
    
        def switch_to_deploy(self):
            if self.deploy:
                return
            eq_s, eq_b = self.get_equivalent_scale_bias()
            self.norm_reparam = build_norm_layer(self.norm_cfg, self.dim)[1]
            self.norm_reparam.weight.data = eq_s
            self.norm_reparam.bias.data = eq_b
            self.__delattr__('norm1')
            if hasattr(self, 'token_mixer'):
                self.__delattr__('token_mixer')
            self.deploy = True
    
    
    def basic_blocks(dim,
                     index,
                     layers,
                     mlp_ratio=4.,
                     norm_cfg=dict(type='GN', num_groups=1),
                     act_cfg=dict(type='GELU'),
                     drop_rate=.0,
                     drop_path_rate=0.,
                     layer_scale_init_value=1e-5,
                     deploy=False):
        """generate RIFormer blocks for a stage."""
        blocks = []
        for block_idx in range(layers[index]):
            block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (
                sum(layers) - 1)
            blocks.append(
                RIFormerBlock(
                    dim,
                    mlp_ratio=mlp_ratio,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    drop=drop_rate,
                    drop_path=block_dpr,
                    layer_scale_init_value=layer_scale_init_value,
                    deploy=deploy,
                ))
        blocks = nn.Sequential(*blocks)
    
        return blocks
    
    def update_weight(model_dict, weight_dict):
        idx, temp_dict = 0, {}
        for k, v in weight_dict.items():
            k = k[9:]
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                idx += 1
        model_dict.update(temp_dict)
        print(f'loading weights... {idx}/{len(model_dict)} items')
        return model_dict
    
    class RIFormer(nn.Module):
        """RIFormer.
    
        A PyTorch implementation of RIFormer introduced by:
        `RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer <https://arxiv.org/abs/xxxx.xxxxx>`_
    
        Args:
            arch (str | dict): The model's architecture. If string, it should be
                one of architecture in ``RIFormer.arch_settings``. And if dict, it
                should include the following two keys:
    
                - layers (list[int]): Number of blocks at each stage.
                - embed_dims (list[int]): The number of channels at each stage.
                - mlp_ratios (list[int]): Expansion ratio of MLPs.
                - layer_scale_init_value (float): Init value for Layer Scale.
    
                Defaults to 'S12'.
    
            norm_cfg (dict): The config dict for norm layers.
                Defaults to ``dict(type='LN2d', eps=1e-6)``.
            act_cfg (dict): The config dict for activation between pointwise
                convolution. Defaults to ``dict(type='GELU')``.
            in_patch_size (int): The patch size of/? input image patch embedding.
                Defaults to 7.
            in_stride (int): The stride of input image patch embedding.
                Defaults to 4.
            in_pad (int): The padding of input image patch embedding.
                Defaults to 2.
            down_patch_size (int): The patch size of downsampling patch embedding.
                Defaults to 3.
            down_stride (int): The stride of downsampling patch embedding.
                Defaults to 2.
            down_pad (int): The padding of downsampling patch embedding.
                Defaults to 1.
            drop_rate (float): Dropout rate. Defaults to 0.
            drop_path_rate (float): Stochastic depth rate. Defaults to 0.
            out_indices (Sequence | int): Output from which network position.
                Index 0-6 respectively corresponds to
                [stage1, downsampling, stage2, downsampling, stage3, downsampling, stage4]
                Defaults to -1, means the last stage.
            frozen_stages (int): Stages to be frozen (all param fixed).
                Defaults to -1, which means not freezing any parameters.
            deploy (bool): Whether to switch the model structure to
                deployment mode. Default: False.
            init_cfg (dict, optional): Initialization config dict
        """  # noqa: E501
    
        # --layers: [x,x,x,x], numbers of layers for the four stages
        # --embed_dims, --mlp_ratios:
        #     embedding dims and mlp ratios for the four stages
        # --downsamples: flags to apply downsampling or not in four blocks
        arch_settings = {
            's12': {
                'layers': [2, 2, 6, 2],
                'embed_dims': [64, 128, 320, 512],
                'mlp_ratios': [4, 4, 4, 4],
                'layer_scale_init_value': 1e-5,
            },
            's24': {
                'layers': [4, 4, 12, 4],
                'embed_dims': [64, 128, 320, 512],
                'mlp_ratios': [4, 4, 4, 4],
                'layer_scale_init_value': 1e-5,
            },
            's36': {
                'layers': [6, 6, 18, 6],
                'embed_dims': [64, 128, 320, 512],
                'mlp_ratios': [4, 4, 4, 4],
                'layer_scale_init_value': 1e-6,
            },
            'm36': {
                'layers': [6, 6, 18, 6],
                'embed_dims': [96, 192, 384, 768],
                'mlp_ratios': [4, 4, 4, 4],
                'layer_scale_init_value': 1e-6,
            },
            'm48': {
                'layers': [8, 8, 24, 8],
                'embed_dims': [96, 192, 384, 768],
                'mlp_ratios': [4, 4, 4, 4],
                'layer_scale_init_value': 1e-6,
            },
        }
    
        def __init__(self,
                     arch='s12',
                     weights = '',
                     in_channels=3,
                     norm_cfg=dict(type='GN', num_groups=1),
                     act_cfg=dict(type='GELU'),
                     in_patch_size=7,
                     in_stride=4,
                     in_pad=2,
                     down_patch_size=3,
                     down_stride=2,
                     down_pad=1,
                     drop_rate=0.,
                     drop_path_rate=0.,
                     out_indices=[0, 2, 4, 6],
                     deploy=False):
    
            super().__init__()
    
            if isinstance(arch, str):
                assert arch in self.arch_settings, \
                    f'Unavailable arch, please choose from ' \
                    f'({set(self.arch_settings)}) or pass a dict.'
                arch = self.arch_settings[arch]
            elif isinstance(arch, dict):
                assert 'layers' in arch and 'embed_dims' in arch, \
                    f'The arch dict must have "layers" and "embed_dims", ' \
                    f'but got {list(arch.keys())}.'
    
            layers = arch['layers']
            embed_dims = arch['embed_dims']
            mlp_ratios = arch['mlp_ratios'] \
                if 'mlp_ratios' in arch else [4, 4, 4, 4]
            layer_scale_init_value = arch['layer_scale_init_value'] \
                if 'layer_scale_init_value' in arch else 1e-5
    
            self.patch_embed = PatchEmbed(
                patch_size=in_patch_size,
                stride=in_stride,
                padding=in_pad,
                in_chans=in_channels,
                embed_dim=embed_dims[0])
    
            # set the main block in network
            network = []
            for i in range(len(layers)):
                stage = basic_blocks(
                    embed_dims[i],
                    i,
                    layers,
                    mlp_ratio=mlp_ratios[i],
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    drop_rate=drop_rate,
                    drop_path_rate=drop_path_rate,
                    layer_scale_init_value=layer_scale_init_value,
                    deploy=deploy)
                network.append(stage)
                if i >= len(layers) - 1:
                    break
                if embed_dims[i] != embed_dims[i + 1]:
                    # downsampling between two stages
                    network.append(
                        PatchEmbed(
                            patch_size=down_patch_size,
                            stride=down_stride,
                            padding=down_pad,
                            in_chans=embed_dims[i],
                            embed_dim=embed_dims[i + 1]))
    
            self.network = nn.ModuleList(network)
    
            if isinstance(out_indices, int):
                out_indices = [out_indices]
            assert isinstance(out_indices, Sequence), \
                f'"out_indices" must by a sequence or int, ' \
                f'get {type(out_indices)} instead.'
            for i, index in enumerate(out_indices):
                if index < 0:
                    out_indices[i] = 7 + index
                    assert out_indices[i] >= 0, f'Invalid out_indices {index}'
            self.out_indices = out_indices
            if self.out_indices:
                for i_layer in self.out_indices:
                    layer = build_norm_layer(norm_cfg,
                                             embed_dims[(i_layer + 1) // 2])[1]
                    layer_name = f'norm{i_layer}'
                    self.add_module(layer_name, layer)
    
            self.deploy = deploy
            if weights:
                self.load_state_dict(update_weight(self.state_dict(), torch.load(weights)['state_dict']))
            self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    
        def forward_embeddings(self, x):
            x = self.patch_embed(x)
            return x
    
        def forward_tokens(self, x):
            outs = []
            for idx, block in enumerate(self.network):
                x = block(x)
                if idx in self.out_indices:
                    norm_layer = getattr(self, f'norm{idx}')
                    x_out = norm_layer(x)
                    outs.append(x_out)
            return outs
        
        def forward(self, x):
            # input embedding
            x = self.forward_embeddings(x)
            # through backbone
            x = self.forward_tokens(x)
            return x
    
    if __name__ == '__main__':
        model = RIFormer('s12', 'riformer-s12_32xb128_in1k-384px_20230406-145eda4c.pth')
        inputs = torch.randn((1, 3, 640, 640))
        for i in model(inputs):
            print(i.size())
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446

    Backbone替换

    yolo.py修改

    def parse_model函数

    def parse_model(d, ch):  # model_dict, input_channels(3)
        # Parse a YOLOv5 model.yaml dictionary
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
        if act:
            Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        is_backbone = False
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            try:
                t = m
                m = eval(m) if isinstance(m, str) else m  # eval strings
            except:
                pass
            for j, a in enumerate(args):
                with contextlib.suppress(NameError):
                    try:
                        args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                    except:
                        args[j] = a
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in {
                    Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                    BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            # TODO: channel, gw, gd
            elif m in {Detect, Segment}:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
                if m is Segment:
                    args[3] = make_divisible(args[3] * gw, 8)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            elif isinstance(m, str):
                t = m
                m = timm.create_model(m, pretrained=args[0], features_only=True)
                c2 = m.feature_info.channels()
            elif m in {RIFormer}: #添加Backbone
                m = m(*args)
                c2 = m.channel
            else:
                c2 = ch[f]
            if isinstance(c2, list):
                is_backbone = True
                m_ = m
                m_.backbone = True
            else:
                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
                t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            if isinstance(c2, list):
                ch.extend(c2)
                for _ in range(5 - len(ch)):
                    ch.insert(0, 0)
            else:
                ch.append(c2)
        return nn.Sequential(*layers), sorted(save)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82

    def _forward_once函数

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    创建.yaml配置文件

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # 0-P1/2
    # 1-P2/4
    # 2-P3/8
    # 3-P4/16
    # 4-P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, RIFormer, [False]], # 4
       [-1, 1, SPPF, [1024, 5]],  # 5
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]], # 6
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
       [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
       [-1, 3, C3, [512, False]],  # 9
    
       [-1, 1, Conv, [256, 1, 1]], # 10
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
       [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
       [-1, 3, C3, [256, False]],  # 13 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]], # 14
       [[-1, 10], 1, Concat, [1]],  # cat head P4 15
       [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]], # 17
       [[-1, 5], 1, Concat, [1]],  # cat head P5 18
       [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)
    
       [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
  • 相关阅读:
    计算机毕设(附源码)JAVA-SSM佳音大学志愿填报系统
    Spring(一)
    【英语:基础进阶_读写专项训练】G3.记叙文写作
    【机器学习】拉格朗日对偶性
    2022阿里云金秋云创季年终双十一活-动汇总!
    0101idea运行scala-基础入门-scala
    上海青浦区大众驾校(科目二·自动挡)真实考场操作全程
    从零开始:开发直播商城APP的技术指南
    MATLAB入门-数据的导入和导出
    技术管理进阶——为什么要多总结,如何做总结?
  • 原文地址:https://blog.csdn.net/DM_zx/article/details/133611527