• 目标检测算法改进系列之Backbone替换为Swin Transformer


    Swin Transformer简介

    Swin Transformer: Hierarchical Vision Transformer using Shifted Windows》作为2021 ICCV最佳论文,屠榜了各大CV任务,性能优于DeiT、ViT和EfficientNet等主干网络,已经替代经典的CNN架构,成为了计算机视觉领域通用的backbone。它基于了ViT模型的思想,创新性的引入了滑动窗口机制,让模型能够学习到跨窗口的信息,同时也。同时通过下采样层,使得模型能够处理超分辨率的图片,节省计算量以及能够关注全局和局部的信息。而本文将从原理和代码角度详细解析Swin Transformer的架构。

    目前将 Transformer 从自然语言处理领域应用到计算机视觉领域主要有两大挑战:
    (1)视觉实体的方差较大,例如同一个物体,拍摄角度不同,转化为二进制后的图片就会具有很大的差异。同时在不同场景下视觉 Transformer 性能未必很好。
    (2)图像分辨率高,像素点多,如果采用ViT模型,自注意力的计算量会与像素的平方成正比。针对上述两个问题,论文中提出了一种基于滑动窗口机制,具有层级设计(下采样层) 的 Swin Transformer。

    其中滑窗操作包括不重叠的 local window,和重叠的 cross-window。将注意力计算限制在一个窗口(window size固定)中,一方面能引入 CNN 卷积操作的局部性,另一方面能大幅度节省计算量,它只和窗口数量成线性关系。通过下采样的层级设计,能够逐渐增大感受野,从而使得注意力机制也能够注意到全局的特征。
    Swin-T and ViT
    Swin Transformer结构图

    Swin Transformer代码实现

    # --------------------------------------------------------
    # Swin Transformer
    # Copyright (c) 2021 Microsoft
    # Licensed under The MIT License [see LICENSE for details]
    # Written by Ze Liu, Yutong Lin, Yixuan Wei
    # --------------------------------------------------------
    
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.utils.checkpoint as checkpoint
    import numpy as np
    from timm.models.layers import DropPath, to_2tuple, trunc_normal_
    
    __all__ = ['SwinTransformer_Tiny']
    
    class Mlp(nn.Module):
        """ Multilayer perceptron."""
    
        def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
            super().__init__()
            out_features = out_features or in_features
            hidden_features = hidden_features or in_features
            self.fc1 = nn.Linear(in_features, hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(hidden_features, out_features)
            self.drop = nn.Dropout(drop)
    
        def forward(self, x):
            x = self.fc1(x)
            x = self.act(x)
            x = self.drop(x)
            x = self.fc2(x)
            x = self.drop(x)
            return x
    
    
    def window_partition(x, window_size):
        """
        Args:
            x: (B, H, W, C)
            window_size (int): window size
    
        Returns:
            windows: (num_windows*B, window_size, window_size, C)
        """
        B, H, W, C = x.shape
        x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
        return windows
    
    
    def window_reverse(windows, window_size, H, W):
        """
        Args:
            windows: (num_windows*B, window_size, window_size, C)
            window_size (int): Window size
            H (int): Height of image
            W (int): Width of image
    
        Returns:
            x: (B, H, W, C)
        """
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x
    
    
    class WindowAttention(nn.Module):
        """ Window based multi-head self attention (W-MSA) module with relative position bias.
        It supports both of shifted and non-shifted window.
    
        Args:
            dim (int): Number of input channels.
            window_size (tuple[int]): The height and width of the window.
            num_heads (int): Number of attention heads.
            qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
            qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
            attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
            proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        """
    
        def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
    
            super().__init__()
            self.dim = dim
            self.window_size = window_size  # Wh, Ww
            self.num_heads = num_heads
            head_dim = dim // num_heads
            self.scale = qk_scale or head_dim ** -0.5
    
            # define a parameter table of relative position bias
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
    
            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(self.window_size[0])
            coords_w = torch.arange(self.window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += self.window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
            relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            self.register_buffer("relative_position_index", relative_position_index)
    
            self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
            self.attn_drop = nn.Dropout(attn_drop)
            self.proj = nn.Linear(dim, dim)
            self.proj_drop = nn.Dropout(proj_drop)
    
            trunc_normal_(self.relative_position_bias_table, std=.02)
            self.softmax = nn.Softmax(dim=-1)
    
        def forward(self, x, mask=None):
            """ Forward function.
    
            Args:
                x: input features with shape of (num_windows*B, N, C)
                mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
            """
            B_, N, C = x.shape
            qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
            q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
    
            q = q * self.scale
            attn = (q @ k.transpose(-2, -1))
    
            relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)
    
            if mask is not None:
                nW = mask.shape[0]
                attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
                attn = attn.view(-1, self.num_heads, N, N)
                attn = self.softmax(attn)
            else:
                attn = self.softmax(attn)
    
            attn = self.attn_drop(attn)
    
            x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
            x = self.proj(x)
            x = self.proj_drop(x)
            return x
    
    
    class SwinTransformerBlock(nn.Module):
        """ Swin Transformer Block.
    
        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads.
            window_size (int): Window size.
            shift_size (int): Shift size for SW-MSA.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
            qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
            drop (float, optional): Dropout rate. Default: 0.0
            attn_drop (float, optional): Attention dropout rate. Default: 0.0
            drop_path (float, optional): Stochastic depth rate. Default: 0.0
            act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
            norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        """
    
        def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                     mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                     act_layer=nn.GELU, norm_layer=nn.LayerNorm):
            super().__init__()
            self.dim = dim
            self.num_heads = num_heads
            self.window_size = window_size
            self.shift_size = shift_size
            self.mlp_ratio = mlp_ratio
            assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
    
            self.norm1 = norm_layer(dim)
            self.attn = WindowAttention(
                dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
                qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
    
            self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            self.norm2 = norm_layer(dim)
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
    
            self.H = None
            self.W = None
    
        def forward(self, x, mask_matrix):
            """ Forward function.
    
            Args:
                x: Input feature, tensor size (B, H*W, C).
                H, W: Spatial resolution of the input feature.
                mask_matrix: Attention mask for cyclic shift.
            """
            B, L, C = x.shape
            H, W = self.H, self.W
            assert L == H * W, "input feature has wrong size"
    
            shortcut = x
            x = self.norm1(x)
            x = x.view(B, H, W, C)
    
            # pad feature maps to multiples of window size
            pad_l = pad_t = 0
            pad_r = (self.window_size - W % self.window_size) % self.window_size
            pad_b = (self.window_size - H % self.window_size) % self.window_size
            x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
            _, Hp, Wp, _ = x.shape
    
            # cyclic shift
            if self.shift_size > 0:
                shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
                attn_mask = mask_matrix.type(x.dtype)
            else:
                shifted_x = x
                attn_mask = None
    
            # partition windows
            x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
            x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C
    
            # W-MSA/SW-MSA
            attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C
    
            # merge windows
            attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
            shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C
    
            # reverse cyclic shift
            if self.shift_size > 0:
                x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
            else:
                x = shifted_x
    
            if pad_r > 0 or pad_b > 0:
                x = x[:, :H, :W, :].contiguous()
    
            x = x.view(B, H * W, C)
    
            # FFN
            x = shortcut + self.drop_path(x)
            x = x + self.drop_path(self.mlp(self.norm2(x)))
    
            return x
    
    
    class PatchMerging(nn.Module):
        """ Patch Merging Layer
    
        Args:
            dim (int): Number of input channels.
            norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        """
        def __init__(self, dim, norm_layer=nn.LayerNorm):
            super().__init__()
            self.dim = dim
            self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
            self.norm = norm_layer(4 * dim)
    
        def forward(self, x, H, W):
            """ Forward function.
    
            Args:
                x: Input feature, tensor size (B, H*W, C).
                H, W: Spatial resolution of the input feature.
            """
            B, L, C = x.shape
            assert L == H * W, "input feature has wrong size"
    
            x = x.view(B, H, W, C)
    
            # padding
            pad_input = (H % 2 == 1) or (W % 2 == 1)
            if pad_input:
                x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
    
            x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
            x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
            x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
            x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
            x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
            x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C
    
            x = self.norm(x)
            x = self.reduction(x)
    
            return x
    
    
    class BasicLayer(nn.Module):
        """ A basic Swin Transformer layer for one stage.
    
        Args:
            dim (int): Number of feature channels
            depth (int): Depths of this stage.
            num_heads (int): Number of attention head.
            window_size (int): Local window size. Default: 7.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
            qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
            qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
            drop (float, optional): Dropout rate. Default: 0.0
            attn_drop (float, optional): Attention dropout rate. Default: 0.0
            drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
            norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
            downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        """
    
        def __init__(self,
                     dim,
                     depth,
                     num_heads,
                     window_size=7,
                     mlp_ratio=4.,
                     qkv_bias=True,
                     qk_scale=None,
                     drop=0.,
                     attn_drop=0.,
                     drop_path=0.,
                     norm_layer=nn.LayerNorm,
                     downsample=None,
                     use_checkpoint=False):
            super().__init__()
            self.window_size = window_size
            self.shift_size = window_size // 2
            self.depth = depth
            self.use_checkpoint = use_checkpoint
    
            # build blocks
            self.blocks = nn.ModuleList([
                SwinTransformerBlock(
                    dim=dim,
                    num_heads=num_heads,
                    window_size=window_size,
                    shift_size=0 if (i % 2 == 0) else window_size // 2,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    norm_layer=norm_layer)
                for i in range(depth)])
    
            # patch merging layer
            if downsample is not None:
                self.downsample = downsample(dim=dim, norm_layer=norm_layer)
            else:
                self.downsample = None
    
        def forward(self, x, H, W):
            """ Forward function.
    
            Args:
                x: Input feature, tensor size (B, H*W, C).
                H, W: Spatial resolution of the input feature.
            """
    
            # calculate attention mask for SW-MSA
            Hp = int(np.ceil(H / self.window_size)) * self.window_size
            Wp = int(np.ceil(W / self.window_size)) * self.window_size
            img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1
    
            mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
            mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
    
            for blk in self.blocks:
                blk.H, blk.W = H, W
                if self.use_checkpoint:
                    x = checkpoint.checkpoint(blk, x, attn_mask)
                else:
                    x = blk(x, attn_mask)
            if self.downsample is not None:
                x_down = self.downsample(x, H, W)
                Wh, Ww = (H + 1) // 2, (W + 1) // 2
                return x, H, W, x_down, Wh, Ww
            else:
                return x, H, W, x, H, W
    
    
    class PatchEmbed(nn.Module):
        """ Image to Patch Embedding
    
        Args:
            patch_size (int): Patch token size. Default: 4.
            in_chans (int): Number of input image channels. Default: 3.
            embed_dim (int): Number of linear projection output channels. Default: 96.
            norm_layer (nn.Module, optional): Normalization layer. Default: None
        """
    
        def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
            super().__init__()
            patch_size = to_2tuple(patch_size)
            self.patch_size = patch_size
    
            self.in_chans = in_chans
            self.embed_dim = embed_dim
    
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
            if norm_layer is not None:
                self.norm = norm_layer(embed_dim)
            else:
                self.norm = None
    
        def forward(self, x):
            """Forward function."""
            # padding
            _, _, H, W = x.size()
            if W % self.patch_size[1] != 0:
                x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
            if H % self.patch_size[0] != 0:
                x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
    
            x = self.proj(x)  # B C Wh Ww
            if self.norm is not None:
                Wh, Ww = x.size(2), x.size(3)
                x = x.flatten(2).transpose(1, 2)
                x = self.norm(x)
                x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
    
            return x
    
    class SwinTransformer(nn.Module):
        """ Swin Transformer backbone.
            A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
              https://arxiv.org/pdf/2103.14030
    
        Args:
            pretrain_img_size (int): Input image size for training the pretrained model,
                used in absolute postion embedding. Default 224.
            patch_size (int | tuple(int)): Patch size. Default: 4.
            in_chans (int): Number of input image channels. Default: 3.
            embed_dim (int): Number of linear projection output channels. Default: 96.
            depths (tuple[int]): Depths of each Swin Transformer stage.
            num_heads (tuple[int]): Number of attention head of each stage.
            window_size (int): Window size. Default: 7.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
            qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
            qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
            drop_rate (float): Dropout rate.
            attn_drop_rate (float): Attention dropout rate. Default: 0.
            drop_path_rate (float): Stochastic depth rate. Default: 0.2.
            norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
            ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
            patch_norm (bool): If True, add normalization after patch embedding. Default: True.
            out_indices (Sequence[int]): Output from which stages.
            frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
                -1 means not freezing any parameters.
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        """
    
        def __init__(self,
                     pretrain_img_size=224,
                     patch_size=4,
                     in_chans=3,
                     embed_dim=96,
                     depths=[2, 2, 6, 2],
                     num_heads=[3, 6, 12, 24],
                     window_size=7,
                     mlp_ratio=4.,
                     qkv_bias=True,
                     qk_scale=None,
                     drop_rate=0.,
                     attn_drop_rate=0.,
                     drop_path_rate=0.2,
                     norm_layer=nn.LayerNorm,
                     ape=False,
                     patch_norm=True,
                     out_indices=(0, 1, 2, 3),
                     frozen_stages=-1,
                     use_checkpoint=False):
            super().__init__()
    
            self.pretrain_img_size = pretrain_img_size
            self.num_layers = len(depths)
            self.embed_dim = embed_dim
            self.ape = ape
            self.patch_norm = patch_norm
            self.out_indices = out_indices
            self.frozen_stages = frozen_stages
    
            # split image into non-overlapping patches
            self.patch_embed = PatchEmbed(
                patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
                norm_layer=norm_layer if self.patch_norm else None)
    
            # absolute position embedding
            if self.ape:
                pretrain_img_size = to_2tuple(pretrain_img_size)
                patch_size = to_2tuple(patch_size)
                patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
    
                self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
                trunc_normal_(self.absolute_pos_embed, std=.02)
    
            self.pos_drop = nn.Dropout(p=drop_rate)
    
            # stochastic depth
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
    
            # build layers
            self.layers = nn.ModuleList()
            for i_layer in range(self.num_layers):
                layer = BasicLayer(
                    dim=int(embed_dim * 2 ** i_layer),
                    depth=depths[i_layer],
                    num_heads=num_heads[i_layer],
                    window_size=window_size,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                    norm_layer=norm_layer,
                    downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                    use_checkpoint=use_checkpoint)
                self.layers.append(layer)
    
            num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
            self.num_features = num_features
    
            # add a norm layer for each output
            for i_layer in out_indices:
                layer = norm_layer(num_features[i_layer])
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)
            self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    
        def forward(self, x):
            """Forward function."""
            x = self.patch_embed(x)
    
            Wh, Ww = x.size(2), x.size(3)
            if self.ape:
                # interpolate the position embedding to the corresponding size
                absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
                x = (x + absolute_pos_embed).flatten(2).transpose(1, 2)  # B Wh*Ww C
            else:
                x = x.flatten(2).transpose(1, 2)
            x = self.pos_drop(x)
    
            outs = []
            for i in range(self.num_layers):
                layer = self.layers[i]
                x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
    
                if i in self.out_indices:
                    norm_layer = getattr(self, f'norm{i}')
                    x_out = norm_layer(x_out)
    
                    out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
                    outs.append(out)
    
            return outs
    
    def update_weight(model_dict, weight_dict):
        idx, temp_dict = 0, {}
        for k, v in weight_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                idx += 1
        model_dict.update(temp_dict)
        print(f'loading weights... {idx}/{len(model_dict)} items')
        return model_dict
    
    def SwinTransformer_Tiny(weights=''):
        model = SwinTransformer(depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24])
        if weights:
            model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
        return model
    
    if __name__ == '__main__':
        device = torch.device('cuda:0')
        model = SwinTransformer().to(device)
        model.half()
        # model.load_state_dict(update_weight(model.state_dict(), torch.load('swin_tiny_patch4_window7_224_22k.pth')['model']))
        inputs = torch.randn((1, 3, 640, 512)).to(device).half()
        res = model(inputs)
        for i in res:
            print(i.size())
        print(model.channel)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603

    Backbone替换

    yolo.py修改

    def parse_model函数

    def parse_model(d, ch):  # model_dict, input_channels(3)
        # Parse a YOLOv5 model.yaml dictionary
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
        if act:
            Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        is_backbone = False
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            try:
                t = m
                m = eval(m) if isinstance(m, str) else m  # eval strings
            except:
                pass
            for j, a in enumerate(args):
                with contextlib.suppress(NameError):
                    try:
                        args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                    except:
                        args[j] = a
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in {
                    Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                    BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            # TODO: channel, gw, gd
            elif m in {Detect, Segment}:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
                if m is Segment:
                    args[3] = make_divisible(args[3] * gw, 8)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            elif isinstance(m, str):
                t = m
                m = timm.create_model(m, pretrained=args[0], features_only=True)
                c2 = m.feature_info.channels()
            elif m in {SwinTransformer_Tiny}: #添加Backbone
                m = m(*args)
                c2 = m.channel
            else:
                c2 = ch[f]
            if isinstance(c2, list):
                is_backbone = True
                m_ = m
                m_.backbone = True
            else:
                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
                t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            if isinstance(c2, list):
                ch.extend(c2)
                for _ in range(5 - len(ch)):
                    ch.insert(0, 0)
            else:
                ch.append(c2)
        return nn.Sequential(*layers), sorted(save)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82

    def _forward_once函数

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    创建.yaml配置文件

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # 0-P1/2
    # 1-P2/4
    # 2-P3/8
    # 3-P4/16
    # 4-P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, SwinTransformer_Tiny, [False]], # 4
       [-1, 1, SPPF, [1024, 5]],  # 5
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]], # 6
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
       [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
       [-1, 3, C3, [512, False]],  # 9
    
       [-1, 1, Conv, [256, 1, 1]], # 10
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
       [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
       [-1, 3, C3, [256, False]],  # 13 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]], # 14
       [[-1, 10], 1, Concat, [1]],  # cat head P4 15
       [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]], # 17
       [[-1, 5], 1, Concat, [1]],  # cat head P5 18
       [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)
    
       [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
  • 相关阅读:
    chatgpt赋能python:Python找零-让你的生活更轻松
    Week 5 - Neural Networks and Neural Language Models
    抖音seo矩阵系统源代码部署及产品功能设计分析
    【数据结构与算法】解题20240313
    C++ partial_sort()排序函数用法详解(深入了解,一文学会)
    strcpy常见的错误
    rust泛型
    CMSC5707-高级人工智能之卷积神经网络CNN
    Java-回调函数
    中间件 Redis 服务集群的部署方案
  • 原文地址:https://blog.csdn.net/DM_zx/article/details/133611620