能
-
- import torch
-
- from torch import optim
- import torch.nn as nn
-
-
- class g(nn.Module):
- def __init__(self):
- super(g, self).__init__()
- self.k = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=1, padding=0, bias=False)
-
- def forward(self, z):
- return self.k(z)
-
-
-
- c = 2
- h = 5
- w = 5
- z = torch.rand( (1,c , h , w)).float().view(1, c, h, w)*100
- z.requires_grad = True
- k = g()
-
- optim = optim.Adam(k.parameters(), lr=1)
- optim.zero_grad()
- r = k(z)
- r= r[:,:,:3,:3]
- r = r.sum()
- loss = (r - 1) * (r - 1)
-
- for name,v in k.named_parameters():
- print(name,v)
- print(z)
- print("*********************")
-
- loss.backward()
- optim.step()
- for name,v in k.named_parameters():
- print(name,v)
- print(z)
输出:
tensor([[[[-0.0464]],
[[ 0.4256]]]], requires_grad=True)
tensor([[[[65.6508, 65.0099, 38.5205, 78.4769, 31.6377],
[27.1530, 5.7923, 23.9614, 59.5419, 3.5597],
[69.9373, 29.7657, 91.4004, 85.5130, 65.2210],
[62.6357, 23.9004, 95.3394, 59.5155, 48.1762],
[98.7728, 97.2193, 66.3625, 65.0421, 22.0612]],
[[19.3582, 2.4226, 47.2068, 20.1124, 31.9324],
[23.4966, 5.0654, 12.4682, 35.3092, 90.3394],
[ 8.4709, 91.5994, 79.7592, 93.8652, 92.6337],
[49.0805, 63.9460, 81.2459, 63.4729, 77.1670],
[17.8333, 18.6162, 44.9271, 44.8790, 3.6609]]]], requires_grad=True)
*********************
k.weight Parameter containing:
tensor([[[[-1.0464]],
[[-0.5744]]]], requires_grad=True)
tensor([[[[65.6508, 65.0099, 38.5205, 78.4769, 31.6377],
[27.1530, 5.7923, 23.9614, 59.5419, 3.5597],
[69.9373, 29.7657, 91.4004, 85.5130, 65.2210],
[62.6357, 23.9004, 95.3394, 59.5155, 48.1762],
[98.7728, 97.2193, 66.3625, 65.0421, 22.0612]],
[[19.3582, 2.4226, 47.2068, 20.1124, 31.9324],
[23.4966, 5.0654, 12.4682, 35.3092, 90.3394],
[ 8.4709, 91.5994, 79.7592, 93.8652, 92.6337],
[49.0805, 63.9460, 81.2459, 63.4729, 77.1670],
[17.8333, 18.6162, 44.9271, 44.8790, 3.6609]]]], requires_grad=True)