两种都可以读取
- ns7=sc.read_visium(path="./ns7/",count_file='./2.3.h5_files/filtered_feature_bc_matrix.h5',library_id="NS_7",load_images=True,s
- ...: ource_image_path="./ns7/spatial/")
-
-
- adata=sc.read_visium(path="./ns56/",count_file='filtered_feature_bc_matrix.h5',library_id="NS_56",load_images=True,source_image_
- ...: path="./ns56/spatial/")
- scanpy.read_visium
- scanpy.read_visium(path, genome=None, *, count_file='filtered_feature_bc_matrix.h5', library_id=None, load_images=True, source_image_path=None)[source]
- Read 10x-Genomics-formatted visum dataset.
-
- In addition to reading regular 10x output, this looks for the spatial folder and loads images, coordinates and scale factors. Based on the Space Ranger output docs.
-
- See spatial() for a compatible plotting function.
- Parameters
- path
- str | Path
- Path to directory for visium datafiles.
- genome
- str | None (default: None)
- Filter expression to genes within this genome.
- count_file
- str (default: 'filtered_feature_bc_matrix.h5')
- Which file in the passed directory to use as the count file. Typically would be one of: ‘filtered_feature_bc_matrix.h5’ or ‘raw_feature_bc_matrix.h5’.
- library_id
- str | None (default: None)
- Identifier for the visium library. Can be modified when concatenating multiple adata objects.
- source_image_path
- str | Path | None (default: None)
- Path to the high-resolution tissue image. Path will be included in .uns["spatial"][library_id]["metadata"]["source_image_path"].


HDF5 Feature-Barcode Matrix Format -Software -Spatial Gene Expression -Official 10x Genomics Support HDF5 Feature-Barcode Matrix Format -Software -Spatial Gene Expression -Official 10x Genomics Support
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/advanced/h5_matrices


-
- #https://scanpy-tutorials.readthedocs.io/en/multiomics/analysis-visualization-spatial.html
- #
- #conda activate squidpy
- import scanpy as sc
- import numpy as np
- import scipy as sp
- import pandas as pd
- import matplotlib.pyplot as plt
- import matplotlib.image as mpimg
- from matplotlib import rcParams
- import seaborn as sb
-
- import SpatialDE
-
- plt.rcParams['figure.figsize']=(8,8)
-
- %load_ext autoreload
- %autoreload 2
-
- #sc.read_visium()
- #
- adata = sc.datasets.visium_sge('V1_Human_Lymph_Node')
- adata.var_names_make_unique()