我们首先定义一个Pytorch实现的神经网络:
# 导入若干工具包
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义一个简单的网络类
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 定义第一层卷积神经网络, 输入通道维度=1, 输出通道维度=6, 卷积核大小3*3
self.conv1 = nn.Conv2d(1, 6, 3)
# 定义第二层卷积神经网络, 输入通道维度=6, 输出通道维度=16, 卷积核大小3*3
self.conv2 = nn.Conv2d(6, 16, 3)
# 定义三层全连接网络
self.fc1 = nn.Linear(16 * 6 * 6, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 在(2, 2)的池化窗口下执行最大池化操作
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
# 计算size, 除了第0个维度上的batch_size
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
运行结果

注意:
模型中所有的可训练参数, 可以通过net.parameters()来获得.
params = list(net.parameters())
print(len(params))
print(params[0].size())
运行结果:

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
运行结果

net.zero_grad()
out.backward(torch.randn(1, 10))
损失函数
output = net(input)
target = torch.randn(10)
# 改变target的形状为二维张量, 为了和output匹配
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
运行结果:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
运行结果:

反向传播(backpropagation)
# Pytorch中执行梯度清零的代码
net.zero_grad()
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
# Pytorch中执行反向传播的代码
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
运行结果:

更新网络参数
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
然后使用Pytorch官方推荐的标准代码如下:
# 首先导入优化器的包, optim中包含若干常用的优化算法, 比如SGD, Adam等
import torch.optim as optim
# 通过optim创建优化器对象
optimizer = optim.SGD(net.parameters(), lr=0.01)
# 将优化器执行梯度清零的操作
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
# 对损失值执行反向传播的操作
loss.backward()
# 参数的更新通过一行标准代码来执行
optimizer.step()
小节总结
学习了构建一个神经网络的典型流程:
学习了损失函数的定义:
学习了反向传播的计算方法:
学习了参数的更新方法:
定义优化器来执行参数的优化与更新.
optimizer = optim.SGD(net.parameters(), lr=0.01)
通过优化器来执行具体的参数更新.
optimizer.step()