测试环境:cuda11.3 pytorch1.11 rtx3090 wsl2 ubuntu20.04
踩了很多坑,网上很多博主的代码根本跑不通,自己去github仓库复现修改的
网上博主的代码日常出现cpu,gpu混合,或许是人家分布式训练了,哈哈哈
下面上干货吧,宝子们点个关注,点个赞,没有废话
yolov8_yaml文件修改(目标检测就修改
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
-
- # Parameters
- nc: 1 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.33, 0.25, 1024]
- s: [0.33, 0.50, 1024]
- m: [0.67, 0.75, 768]
- l: [1.00, 1.00, 512]
- x: [1.00, 1.25, 512]
-
- # YOLOv8.0n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 3, C2f, [128, True]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 6, C2f, [256, True]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 9, SwinV2_CSPB, [512, 512]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 3, SwinV2_CSPB, [1024, 1024]]
- - [-1, 1, SPPF, [1024, 5]] # 9
-
- # YOLOv8.0n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 3, C2f, [512]] # 12
-
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 3, C2f, [256]] # 15 (P3/8-small)
-
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 12], 1, Concat, [1]] # cat head P4
- - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
-
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 9], 1, Concat, [1]] # cat head P5
- - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
-
- - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
在nn/modules/block.py最下面加入
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
- from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
- from .transformer import TransformerBlock
- import numpy as np
- class WindowAttention(nn.Module):
-
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
-
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
-
- # define a parameter table of relative position bias
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
-
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.register_buffer("relative_position_index", relative_position_index)
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
-
- nn.init.normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
-
- def forward(self, x, mask=None):
-
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
-
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- # print(attn.dtype, v.dtype)
- try:
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- except:
- # print(attn.dtype, v.dtype)
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
-
- class WindowAttention(nn.Module):
-
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
-
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
-
- # define a parameter table of relative position bias
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
-
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.register_buffer("relative_position_index", relative_position_index)
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
-
- nn.init.normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
-
- def forward(self, x, mask=None):
-
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
-
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- # print(attn.dtype, v.dtype)
- try:
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- except:
- # print(attn.dtype, v.dtype)
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
-
- class WindowAttention_v2(nn.Module):
-
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
- pretrained_window_size=[0, 0]):
-
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.pretrained_window_size = pretrained_window_size
- self.num_heads = num_heads
-
- self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
-
- # mlp to generate continuous relative position bias
- self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
- nn.ReLU(inplace=True),
- nn.Linear(512, num_heads, bias=False))
-
- # get relative_coords_table
- relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
- relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
- relative_coords_table = torch.stack(
- torch.meshgrid([relative_coords_h,
- relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
- if pretrained_window_size[0] > 0:
- relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
- relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
- else:
- relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
- relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
- relative_coords_table *= 8 # normalize to -8, 8
- relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
- torch.abs(relative_coords_table) + 1.0) / np.log2(8)
-
- self.register_buffer("relative_coords_table", relative_coords_table)
-
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.register_buffer("relative_position_index", relative_position_index)
-
- self.qkv = nn.Linear(dim, dim * 3, bias=False)
- if qkv_bias:
- self.q_bias = nn.Parameter(torch.zeros(dim))
- self.v_bias = nn.Parameter(torch.zeros(dim))
- else:
- self.q_bias = None
- self.v_bias = None
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- self.softmax = nn.Softmax(dim=-1)
-
- def forward(self, x, mask=None):
-
- B_, N, C = x.shape
- qkv_bias = None
- if self.q_bias is not None:
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
- qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- # cosine attention
- attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
- max_tensor = torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)
- logit_scale = torch.clamp(self.logit_scale, max=max_tensor).exp()
- attn = attn * logit_scale
-
- relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
- relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
- attn = attn + relative_position_bias.unsqueeze(0)
-
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
-
- attn = self.attn_drop(attn)
-
- try:
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- except:
- x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
-
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
-
- def extra_repr(self) -> str:
- return f'dim={self.dim}, window_size={self.window_size}, ' \
- f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
-
- def flops(self, N):
- # calculate flops for 1 window with token length of N
- flops = 0
- # qkv = self.qkv(x)
- flops += N * self.dim * 3 * self.dim
- # attn = (q @ k.transpose(-2, -1))
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
- # x = (attn @ v)
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
- # x = self.proj(x)
- flops += N * self.dim * self.dim
- return flops
-
-
- class Mlp_v2(nn.Module):
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
-
-
- # add 2 functions
- class SwinTransformerLayer_v2(nn.Module):
-
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
- super().__init__()
- self.dim = dim
- # self.input_resolution = input_resolution
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- # if min(self.input_resolution) <= self.window_size:
- # # if window size is larger than input resolution, we don't partition windows
- # self.shift_size = 0
- # self.window_size = min(self.input_resolution)
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention_v2(
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
- qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
- pretrained_window_size=(pretrained_window_size, pretrained_window_size))
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
-
-
- def create_mask(self, H, W):
- # calculate attention mask for SW-MSA
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
-
- def window_partition(x, window_size):
- """
- Args:
- x: (B, H, W, C)
- window_size (int): window size
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
-
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
-
- def forward(self, x):
- # reshape x[b c h w] to x[b l c]
- _, _, H_, W_ = x.shape
- Padding = False
- if min(H_, W_) < self.window_size or H_ % self.window_size != 0 or W_ % self.window_size != 0:
- Padding = True
- # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
- pad_r = (self.window_size - W_ % self.window_size) % self.window_size
- pad_b = (self.window_size - H_ % self.window_size) % self.window_size
- x = F.pad(x, (0, pad_r, 0, pad_b))
- # print('2', x.shape)
- B, C, H, W = x.shape
- L = H * W
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
- # create mask from init to forward
- if self.shift_size > 0:
- attn_mask = self.create_mask(H, W).to(x.device)
- else:
- attn_mask = None
- shortcut = x
- x = x.view(B, H, W, C)
- # cyclic shift
- if self.shift_size > 0:
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- else:
- shifted_x = x
- # partition windows
-
- def window_partition(x, window_size):
- """
- Args:
- x: (B, H, W, C)
- window_size (int): window size
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
-
- def window_reverse(windows, window_size, H, W):
- """
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
-
-
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
- # W-MSA/SW-MSA
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
- # merge windows
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
- # reverse cyclic shift
- if self.shift_size > 0:
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- x = shifted_x
- x = x.view(B, H * W, C)
- x = shortcut + self.drop_path(self.norm1(x))
- # FFN
- x = x + self.drop_path(self.norm2(self.mlp(x)))
- x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
-
- if Padding:
- x = x[:, :, :H_, :W_] # reverse padding
- return x
-
- def extra_repr(self) -> str:
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
-
- def flops(self):
- flops = 0
- H, W = self.input_resolution
- # norm1
- flops += self.dim * H * W
- # W-MSA/SW-MSA
- nW = H * W / self.window_size / self.window_size
- flops += nW * self.attn.flops(self.window_size * self.window_size)
- # mlp
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
- # norm2
- flops += self.dim * H * W
- return flops
-
-
- class SwinTransformer2Block(nn.Module):
- def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
- super().__init__()
- self.conv = None
- if c1 != c2:
- self.conv = Conv(c1, c2)
- # remove input_resolution
- self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
- shift_size=0 if (i % 2 == 0) else window_size // 2) for i
- in range(num_layers)])
-
- def forward(self, x):
- if self.conv is not None:
- x = self.conv(x)
- x = self.blocks(x)
- return x
-
-
- class SwinV2_CSPB(nn.Module):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(SwinV2_CSPB, self).__init__()
- c_ = int(c2) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1, 1)
- num_heads = c_ // 32
- self.m = SwinTransformer2Block(c_, c_, num_heads, n)
- # self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
-
- def forward(self, x):
- x1 = self.cv1(x)
- y1 = self.m(x1)
- y2 = self.cv2(x1)
- return self.cv3(torch.cat((y1, y2), dim=1))
随后在这个目录的init.py里面把你的新的东西放进去
- from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck,
- HGBlock, HGStem, Proto, RepC3,GAM_Attention,ResBlock_CBAM,GCT,C3STR,SwinV2_CSPB)
- from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus,
- GhostConv, LightConv, RepConv, SpatialAttention)
- from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
- from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
- MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
-
- __all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
- 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
- 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
- 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
- 'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
- 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP','ResBlock_CBAM','CBAM','GAM_Attention',
- 'GCT','C3STR','SwinV2_CSPB')
然后去task.py
在导包那里,把这个导入进去
- rom ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
- Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
- Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
- RTDETRDecoder ,Segment,CBAM,GAM_Attention,ResBlock_CBAM,GCT,C3STR,SwinV2_CSPB)
然后同样在task.py里面搜索if m in
把你的新的swin模块放进去
- if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
- BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3
- ,CBAM , GAM_Attention ,ResBlock_CBAM,GCT,C3STR,SwinV2_CSPB):
最后
命令行:python setup.py install 注册
命令行:你的训练命令
