• 轮廓检测及透视变换


    文章目录


    注:代码来自b站:阿头目G

    # 导入工具包
    import numpy as np
    import argparse
    import cv2
    
    # # 设置参数
    # ap = argparse.ArgumentParser()
    # ap.add_argument("-i", "--image", required = True,
    # 	help = "Path to the image to be scanned")
    # args = vars(ap.parse_args())
    
    def order_points(pts):
    	# 一共4个坐标点
    	rect = np.zeros((4, 2), dtype = "float32")
    
    	# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
    	# 计算左上,右下
    	s = pts.sum(axis = 1)
    	rect[0] = pts[np.argmin(s)]
    	rect[2] = pts[np.argmax(s)]
    
    	# 计算右上和左下
    	diff = np.diff(pts, axis = 1)
    	rect[1] = pts[np.argmin(diff)]
    	rect[3] = pts[np.argmax(diff)]
    
    	return rect
    
    def four_point_transform(image, pts):
    	# 获取输入坐标点
    	rect = order_points(pts)
    	(tl, tr, br, bl) = rect
    
    	# 计算输入的w和h值
    	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
    	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
    	maxWidth = max(int(widthA), int(widthB))
    
    	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
    	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
    	maxHeight = max(int(heightA), int(heightB))
    
    	# 变换后对应坐标位置
    	dst = np.array([
    		[0, 0],
    		[maxWidth - 1, 0],
    		[maxWidth - 1, maxHeight - 1],
    		[0, maxHeight - 1]], dtype = "float32")
    
    	# 计算变换矩阵
    	M = cv2.getPerspectiveTransform(rect, dst)
    	warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
    
    	# 返回变换后结果
    	return warped
    
    def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    	dim = None
    	(h, w) = image.shape[:2]
    	if width is None and height is None:
    		return image
    	if width is None:
    		r = height / float(h)
    		dim = (int(w * r), height)
    	else:
    		r = width / float(w)
    		dim = (width, int(h * r))
    	resized = cv2.resize(image, dim, interpolation=inter)
    	return resized
    
    # 读取输入
    # image = cv2.imread(args["image"])
    image=cv2.imread('images/receipt.jpg')
    #坐标也会相同变化
    ratio = image.shape[0] / 500.0
    orig = image.copy()
    
    
    image = resize(orig, height = 500)
    
    # 预处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 75, 200)
    
    # 展示预处理结果
    print("STEP 1: 边缘检测")
    cv2.imshow("Image", image)
    cv2.imshow("Edged", edged)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    # 轮廓检测
    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
    cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]
    
    # 遍历轮廓
    for c in cnts:
    	# 计算轮廓近似
    	peri = cv2.arcLength(c, True)
    	# C表示输入的点集
    	# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
    	# True表示封闭的
    	approx = cv2.approxPolyDP(c, 0.02 * peri, True)
    
    	# 4个点的时候就拿出来
    	if len(approx) == 4:
    		screenCnt = approx
    		break
    
    # 展示结果
    print("STEP 2: 获取轮廓")
    cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    cv2.imshow("Outline", image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    # 透视变换
    warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)
    
    # 二值处理
    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]
    cv2.imwrite('scan.jpg', ref)
    # 展示结果
    print("STEP 3: 变换")
    cv2.imshow("Original", resize(orig, height = 650))
    cv2.imshow("Scanned", resize(ref, height = 650))
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129

    在这里插入图片描述
    透视变换

    # https://digi.bib.uni-mannheim.de/tesseract/
    # 配置环境变量如E:\Program Files (x86)\Tesseract-OCR
    # tesseract -v进行测试
    # tesseract XXX.png 得到结果 
    # pip install pytesseract
    # anaconda lib site-packges pytesseract pytesseract.py
    # tesseract_cmd 修改为绝对路径即可
    from PIL import Image
    import pytesseract
    import cv2
    import os
    
    preprocess = 'blur' #thresh
    
    image = cv2.imread('scan.jpg')
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    
    if preprocess == "thresh":
        gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    
    if preprocess == "blur":
        gray = cv2.medianBlur(gray, 3)
        
    filename = "{}.png".format(os.getpid())
    cv2.imwrite(filename, gray)
        
    text = pytesseract.image_to_string(Image.open(filename))
    print(text)
    os.remove(filename)
    
    cv2.imshow("Image", image)
    cv2.imshow("Output", gray)
    cv2.waitKey(0)                                   
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34

    在这里插入图片描述

  • 相关阅读:
    第二章 进程与线程 十九、死锁的概念
    02.nginx高可用负载均衡
    基于ACO蚁群算法的tsp优化问题matlab仿真
    动漫制作技巧如何制作动漫视频
    Nginx之upstream被动式重试机制解读z
    ERROR in static/js/xxx.js from UglifyJs Unexpected token name «currentVersion»
    前端高频面试题——有做过权限相关的事情吗?
    2023年最新版Apollo保姆级使用手册(超级详尽版本)
    深入解析C#中的第三方库NPOI:Excel和Word文件处理的利器
    C#流Stream与IO详解(5)——读取文件的详细流程
  • 原文地址:https://blog.csdn.net/weixin_72050316/article/details/133364034