- private String getMaxSubString2(String s1, String s2) {
- String longgerString = s1.length() > s2.length() ? s1 : s2;
- String shorterString = s1.length() > s2.length() ? s2 : s1;
-
- char[] chars1 = shorterString.toCharArray();
- List
subStringSet = new ArrayList<>(); - for (int i = 0; i < chars1.length; i++) {
- for (int j = i+1; j <= chars1.length; j++) {
- subStringSet.add(shorterString.substring(i, j));
- }
-
- }
-
- String result = "";
- for (String s : subStringSet) {
- if (longgerString.contains(s) && s.length() > result.length()) {
- result = s;
- }
- }
-
- return result;
- }
时间复杂度:O(
)
- private String getMaxSubString(String s1, String s2) {
- if (s1.length() > s2.length()) {
- String temp = s1;
- s1 = s2;
- s2 = temp;
- }
-
- char[] chars1 = s1.toCharArray();
- char[] chars2 = s2.toCharArray();
-
- String result = "";
- for (int i = 0; i < chars1.length; i++) {
- char char1 = chars1[i];
- for (int j = 0; j < chars2.length; j++) {
- char char2 = chars2[j];
- if (char1 != char2) {
- continue;
- }
-
- int index1 = i;
- int index2 = j;
- while (index1 < chars1.length && index2 < chars2.length && chars1[index1] == chars2[index2]) {
- index1++;
- index2++;
- }
-
- String substring = s1.substring(i, index1);
- if (substring.length() > result.length()) {
- result = substring;
- }
- }
- }
-
- return result;
- }
时间复杂度:O(
*m)
设dp[i][j]表示 s1 位置 i 与 s2 位置 j 之间最长子串长度,那么可得dp方程:
- private String getMaxSubStringForDP(String s1, String s2) {
- if (s1.length() > s2.length()) {
- String temp = s1;
- s1 = s2;
- s2 = temp;
- }
-
- char[] chars1 = s1.toCharArray();
- char[] chars2 = s2.toCharArray();
- int len1 = chars1.length;
- int len2 = chars2.length;
-
- int[][] dp = new int[len1+1][len2+1];
- int maxLength = 0;
- int index = 0;
- for(int i = 1; i <= len1; i++) {
- for (int j = 1; j <= len2; j++) {
- if (chars1[i-1] == chars2[j-1]) {
- dp[i][j] = dp[i-1][j-1] + 1;
- if (dp[i][j] > maxLength) {
- maxLength = dp[i][j];
- index = i;
- }
- }
- }
- }
-
- return s1.substring(index-maxLength, index);
- }
时间复杂度:O(n*m)