本文是LLM系列文章,针对《EdgeMoE: Fast On-Device Inference of MoE-based Large Language Models》的翻译。
GPT和LLaMa等大型语言模型(LLM)由于其在广泛的机器学习任务中的卓越能力,迎来了机器智能的一场革命。然而,LLM从数据中心向边缘设备的过渡带来了一系列挑战和机遇。虽然这种转变可以增强隐私和可用性,但这些模型的巨大参数大小阻碍了这种转变,导致不切实际的运行时成本。
鉴于这些考虑,我们介绍了EdgeMoE,这是第一个为专家(MoE)LLM的混合量身定制的设备上推理引擎,这是稀疏LLM的一种流行变体,其参数大小尺度显示出几乎恒定的计算复杂性。EdgeMoE通过在存储层次结构中战略性地划分模型,实现了内存和计算效率。具体而言,非专家权重存储在设备的存储器中,而专家权重则保存在外部存储器中