• 排序算法-堆排序和TopK算法


    最小堆排序

    从大到小

    
    public class MinHeapSortTest {
    
        @Test
        public void testQuickSort() {
    //        testSort(QuickSort::sort);
            testSort(arr -> MinHeapSortTest.minHeapSort(arr));
        }
    
        public void testSort(Consumer consumer) {
            int[] result = {1, 2, 3, 4, 5, 6, 7};
            int[] input = {7, 6, 5, 4, 3, 2, 1};
            testSort(consumer, input, result);
            testSort(consumer, new int[]{1, 3, 2, 6, 5, 4, 7}, result);
            testSort(consumer, new int[]{6, 5, 4, 1, 3, 2, 7}, result);
            testSort(consumer, new int[]{1, 3, 6, 5, 4, 2, 7}, result);
            testSort(consumer, new int[]{6, 5, 4, 7, 1, 3, 2}, result);
        }
    
        public void testSort(Consumer consumer, int[] input, int[] result) {
            System.out.println("src = " + Arrays.toString(input));
            consumer.accept(input);
            // 验证结果
            for (int i = 0; i < result.length; i++) {
                Assert.assertEquals("\ninp = " + Arrays.toString(input) + "\nout = " + Arrays.toString(result), input[i], result[i]);
            }
        }
    
        /***********************/
    
        public static void minHeapSort(int[] arr) {
            for (int i = arr.length / 2 - 1; i >= 0; i--) {
                minHeapDown(arr, i, arr.length);
            }
            for (int i = arr.length - 1; i > 0; i--) {
                int tmp = arr[i];
                arr[i] = arr[0];
                arr[0] = tmp;
                minHeapDown(arr, 0, i);
            }
    
            int r = arr.length - 1;
            int l = 0;
            while (l < r) {
                int tmp = arr[r];
                arr[r] = arr[l];
                arr[l] = tmp;
                r--;
                l++;
            }
        }
    
        public static void minHeapDown(int[] arr, int i, int len) {
            int tmp = arr[i];
            for (int k = 2 * i + 1; k < len; k = 2 * i + 1) {
                if (k + 1 < len && arr[k + 1] <= arr[k]) {
                    k++;
                }
                if (tmp <= arr[k]) {
                    break;
                }
                arr[i] = arr[k];
                i = k;
            }
            arr[i] = tmp;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67

    最大堆排序

    从小到大

    public class HeapSort {
    
        @Test
        public void testQuickSort() {
    //        testSort(QuickSort::sort);
            testSort(arr -> HeapSort.heapSort1(arr));
        }
    
        public void testSort(Consumer consumer) {
            int[] result = {1, 2, 3, 4, 5, 6, 7};
            int[] input = {7, 6, 5, 4, 3, 2, 1};
            testSort(consumer, input, result);
            testSort(consumer, new int[]{1, 3, 2, 6, 5, 4, 7}, result);
            testSort(consumer, new int[]{6, 5, 4, 1, 3, 2, 7}, result);
            testSort(consumer, new int[]{1, 3, 6, 5, 4, 2, 7}, result);
            testSort(consumer, new int[]{6, 5, 4, 7, 1, 3, 2}, result);
        }
    
        public void testSort(Consumer consumer, int[] input, int[] result) {
            System.out.println("src = " + Arrays.toString(input));
            consumer.accept(input);
            // 验证结果
            for (int i = 0; i < result.length; i++) {
                Assert.assertEquals("\ninp = " + Arrays.toString(input) + "\nout = " + Arrays.toString(result), input[i], result[i]);
            }
        }
    
        public static void heapSort1(int[] arr) {
            for (int i = arr.length / 2 - 1; i >= 0; i--) {
                heapDown1(arr, i, arr.length);
            }
            for (int j = arr.length - 1; j > 0; j--) {
                int temp = arr[0];
                arr[0] = arr[j];
                arr[j] = temp;
                heapDown1(arr, 0, j);
            }
        }
    
        public static void heapDown1(int[] arr, int i, int len) {
            int tmp = arr[i];
            for (int k = 2 * i + 1; k < len; k = k * 2 + 1) {
                if (k + 1 < len && arr[k + 1] >= arr[k]) {
                    k++;
                }
                if (tmp >= arr[k]) {
                    break;
                }
                arr[i] = arr[k];
                i = k;
            }
            arr[i] = tmp;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

    堆排序实现的topK算法

    topK算法也可以使用 快速排序算法 实现

    public class HeapSortTopK {
    
        @Test
        public void testSort() {
            testSort(arr -> HeapSortTopK.topK(arr, 3, Integer::compareTo));
        }
    
        @Test
        public void testSort1() {
            // 取最大的3个值
            List result = HeapSortTopK.topK(Arrays.asList(new Integer[]{1, 3, 6, 5, 4, 2, 7}), 3, (o1, o2) -> o2 - o1);
            System.out.println(result);
        }
    
        public void testSort(Function, List> function) {
            Integer[] result = {1, 2, 3};
            Integer[] input = {7, 6, 5, 4, 3, 2, 1};
            testSort(function, input, result);
            testSort(function, new Integer[]{1, 3, 2, 6, 5, 4, 7}, result);
            testSort(function, new Integer[]{6, 5, 4, 1, 3, 2, 7}, result);
            testSort(function, new Integer[]{1, 3, 6, 5, 4, 2, 7}, result);
            testSort(function, new Integer[]{6, 5, 4, 7, 1, 3, 2}, result);
        }
    
        public void testSort(Function, List> function, Integer[] input, Integer[] result) {
            System.out.println("src = " + Arrays.toString(input));
            List returnResult = function.apply(Arrays.asList(input));
            // 验证结果
            Assert.assertTrue(returnResult.size() == result.length);
            for (int i = 0; i < result.length; i++) {
                Assert.assertEquals("\ninp = " + returnResult.toString() + "\nout = " + Arrays.toString(result), returnResult.get(i), result[i]);
            }
        }
    
         // 取list中最小的topK
        public static  List topK(List list, int topK, Comparator comparator) {
            int len = Math.min(topK, list.size());
            T[] heap = (T[])new Object[len];
            for (int i = 0; i < len; i++) {
                heap[i] = list.get(i);
            }
            initHeap(heap, len, comparator);
    
            for (int i = len; i < list.size(); i++) {
                T t = list.get(i);
                int compare = comparator.compare(heap[0], t);
                if (compare > 0) {
                    heap[0] = t;
                    downHeap(heap, 0, len, comparator);
                }
            }
    
            for (int i = len - 1; i > 0; i--) {
                T tmp = heap[i];
                heap[i] = heap[0];
                heap[0] = tmp;
                downHeap(heap, 0, i, comparator);
            }
    
            return Arrays.asList(heap);
        }
    
        public static  void initHeap(T[] heap, int len, Comparator comparator) {
            for (int i = len / 2 - 1; i >= 0; i--) {
                downHeap(heap, i, len, comparator);
            }
        }
    
        public static  void downHeap(T[] heap, int i, int len, Comparator comparator) {
            T tmp = heap[i];
            for (int k = 2 * i + 1; k < len; k = 2 * k + 1) {
                if (k + 1 < len && comparator.compare(heap[k], heap[k + 1]) <= 0) {
                    k++;
                }
                if (comparator.compare(tmp, heap[k]) >= 0) {
                    break;
                }
                heap[i] = heap[k];
                i = k;
            }
            heap[i] = tmp;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
  • 相关阅读:
    老挝市场最全开发攻略
    c#Nettonsoft.net库常用的方法json序列化反序列化
    Excel·VBA数组排列函数
    注意!11月PMP考试时间已定!
    C++学习第十课--构造函数详解、explicit与初始化列表笔记
    『从零开始学小程序』媒体组件video组件
    Java反射
    Docker容器技术
    ChatGPT 如何改变科研之路
    02-React脚手架+Todos项目(组件拆分, State应用, 组件通信+数据校验, nanoid)
  • 原文地址:https://blog.csdn.net/sndayYU/article/details/132980099