
"寻一颗,未萌的渺小啊,随着青翠未来,升入辽阔云霄~"
现在你有一个"升序"数组,想让你在这个数组里完成查找数字n,在这个数组内的下标,你可以怎么做?这也许是不少友子们初遇二分问题的场景。你可以使用O(N)的时间复杂度,对该数组进行遍历,就像这样。
- void FindNum(vector<int>& arr,int n)
- {
- for(int i=0;i
size();++i) - {
- if(arr[i] == n) return i;
- }
-
- return -1;
- }
可是我们没有很好地利用到数组“有序”的特点,我们可以令数字为mid,那么借着有序的特点,可以将这个数组划分为两个区域,一边是小于mid的数,一边是大于mid的数。
- void FindNum(vector<int>& arr,int n)
- {
- int left = 0,right = arr.size()-1;
-
- while(left < right)
- {
- int mid = (left + right) / 2;
- if(arr[mid] < n) mid = left+1;
- else if(arr[mid] > m ) mid = right-1;
- else mid;
- }
-
- return -1;
- }
所以,按照这样的算法查找数组中的某个数,时间复杂度可以下降为O(logN),是一个特别大的提升,但使用这个算法的前前提的 “数组有序”。
——前言

这道题是最朴素的二分查找,同前言举的例子是一样的解题思路。

- class Solution {
- public:
- int search(vector<int>& nums, int target) {
- int left = 0,right = nums.size()-1;
- // 当left==right时 当前元素是没有判断的
- // 因此这里需要再循环一次
- while(left <= right)
- {
- int mid = (left + right) / 2;
- if(nums[mid] > target){
- right = mid - 1;
- }
- else if(nums[mid] < target){
- left = mid + 1;
- }
- else return mid;
- }
- return -1;
- }
- };

根据数组"非递减顺序" 使用二分查找但朴素的二分查找只适用于查找一个数,所以这道题需要变形。

查找区间右端点也是类似过程,只是需要注意细节处理:

- class Solution {
- public:
- vector<int> searchRange(vector<int>& nums, int target) {
- if(nums.empty()) return {-1,-1};
- int left = 0,right = nums.size()-1;
- vector<int> ret;
- // 找左端点
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] < target){
- left = mid + 1;
- }
- else right = mid;
- }
-
- // 此时找到了左端点
- if(nums[left] != target) ret.push_back(-1);
- else ret.push_back(left);
-
- right = nums.size()-1;
- // 找右端点
- while(left < right)
- {
- int mid = left + (right - left + 1) /2;
- if(nums[mid] > target){
- right = mid - 1;
- }
- else left = mid;
- }
- if(nums[right] != target) ret.push_back(-1);
- else ret.push_back(right);
- return ret;
- }
- };

这道题可以使用左端点和右端点解决。

左端点:
- class Solution {
- public:
- int searchInsert(vector<int>& nums, int target) {
- int left = 0,right = nums.size()-1;
-
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] < target){
- left = mid + 1;
- }
- else right = mid;
- }
-
- // 可能该数不存在并且 > 当前数
- if(nums[left] < target) return left + 1;
-
- return left;
- }
- };
右端点:
- class Solution {
- public:
- int searchInsert(vector<int>& nums, int target) {
- int left = 0,right = nums.size()-1;
-
- while(left < right)
- {
- int mid = left + (right - left + 1) / 2;
- if(nums[mid] > target){
- right = mid - 1;
- }
- else left = mid;
- }
-
- // 可能该数不存在并且 > 当前数
- if(nums[left] < target) return left + 1;
-
- return left;
- }
- };


- class Solution {
- public:
- int mySqrt(int x) {
- if(x < 1) return 0;
-
- // 1~x
- int left = 1,right = x;
- while(left < right)
- {
- int mid = left + (right -left + 1) / 2;
- if(x < pow(mid,2))
- {
- right = mid - 1;
- }
- else left = mid;
- }
- return left;
- }
- };


左端点:
- class Solution {
- public:
- int peakIndexInMountainArray(vector<int>& arr) {
- int left = 1,right = arr.size()-2;
- // [left,mid] [mid+1,right]
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- // 左端点
- if(arr[mid] < arr[mid+1]){
- left = mid + 1;
- }
- else right = mid;
- }
-
- return right;
- }
- };
右端点:
- class Solution {
- public:
- int peakIndexInMountainArray(vector<int>& arr) {
- int left = 1,right = arr.size()-2;
- // [left,mid] [mid+1,right]
- while(left < right)
- {
- int mid = left + (right - left + 1) / 2;
- if(arr[mid] < arr[mid-1]){
- right = mid - 1;
- }
- else left = mid;
- }
-
- return left;
- }
- };


- class Solution {
- public:
- int findPeakElement(vector<int>& nums) {
- if(nums.size() == 1) return 0;
- int left = 0,right = nums.size() - 1;
-
- while(left < right)
- {
- // 左端点发
- int mid = left + (right - left) / 2;
- if(nums[mid] < nums[mid+1]){
- left = mid+1;
- }
- else right = mid;
- }
-
- return left;
- }
- };

如何找到本题的二段性是比较难点。

- class Solution {
- public:
- int findMin(vector<int>& nums) {
- int left = 0,right = nums.size()-1;
- int x = nums[right]; //标记参照点
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] > x){
- left = mid + 1;
- }
- else right = mid;
- }
-
- return nums[left];
- }
- };

- class Solution {
- public:
- int missingNumber(vector<int>& nums) {
- int left = 0,right = nums.size()-1;
- while(left < right)
- {
- int mid = left + (right-left) / 2;
- if(nums[mid] == mid) {
- left = mid + 1;
- }
- else right = mid;
- }
- // left为0时 特殊处理
- return left == nums[left] ? left+1:left;
- }
- };
本篇到此结束,感谢你的阅读。
祝你好运,向阳而生~
