• PCL入门(六):深度图提取边界


    1. 深度图介绍

    参考《02-深度图》

    深度图像(Depth Images)也被称为距离影像(Range Image),是指将从图像采集器到场景中各点的距离值作为像素值的图像,它直接反应了景物可见表面的几何形状,利用它可以很方便的解决3D目标描述中的许多问题,深度图像经过点云变换可以计算为点云数据,有规则及有必要信息的点云数据可以反算为深度图像数据。

    在这里插入图片描述

    2. 深度图生成

    参考双愚的代码《PCL学习笔记5-range-image深度图像》

    将兔子3d数据转为深度图,并展示,如下

    • range_image_creation.cpp
    #include  // //关于深度图像的头文件
    #include 
    #include   //  //PCL可视化的头文件
    #include  // //深度图可视化的头文件
    
    int main(int argc, char **argv)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloudPtr(new pcl::PointCloud<pcl::PointXYZ>);
        pcl::PointCloud<pcl::PointXYZ> &pointCloud = *pointCloudPtr;
    
        // 创建一个矩形形状的点云
        // Generate the data
        // for (float y = -0.5f; y <= 0.5f; y += 0.01f)
        // {
        //     for (float z = -0.5f; z <= 0.5f; z += 0.01f)
        //     {
        //         pcl::PointXYZ point;
        //         point.x = 2.0f - y;
        //         point.y = y;
        //         point.z = z;
        //         pointCloud.points.push_back(point);
        //     }
        // }
        // pointCloud.width = (uint32_t)pointCloud.points.size();
        // pointCloud.height = 1;
    
        pcl::io::loadPCDFile("bunny.pcd", pointCloud);
        // pcl::io::loadPCDFile("../table_scene_lms400_downsampled.pcd", pointCloud);
    
        //实现一个呈矩形形状的点云
        // We now want to create a range image from the above point cloud, with a 1deg angular resolution   根据之前得到的点云图,通过1deg的分辨率生成深度图。
        //angular_resolution为模拟的深度传感器的角度分辨率,即深度图像中一个像素对应的角度大小
        float angularResolution = (float)(1.0f * (M_PI / 180.0f)); //  弧度1°
                                                                   //max_angle_width为模拟的深度传感器的水平最大采样角度,
        float maxAngleWidth = (float)(360.0f * (M_PI / 180.0f));   //  弧度360°
        //max_angle_height为模拟传感器的垂直方向最大采样角度  都转为弧度
        float maxAngleHeight = (float)(180.0f * (M_PI / 180.0f)); // 弧度180°
        //传感器的采集位置
        Eigen::Affine3f sensorPose = (Eigen::Affine3f)Eigen::Translation3f(0.0f, 0.0f, 0.0f);
        //深度图像遵循坐标系统
        pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
        float noiseLevel = 0.00; //noise_level获取深度图像深度时,近邻点对查询点距离值的影响水平
        float minRange = 0.0f;   //min_range设置最小的获取距离,小于最小获取距离的位置为传感器的盲区
        int borderSize = 1;      //border_size获得深度图像的边缘的宽度
    
        boost::shared_ptr<pcl::RangeImage> range_image_ptr(new pcl::RangeImage); // 用于可视化?共享指针
        pcl::RangeImage &rangeImage = *range_image_ptr;
    
        rangeImage.createFromPointCloud(pointCloud, angularResolution, maxAngleWidth, maxAngleHeight,
                                        sensorPose, coordinate_frame, noiseLevel, minRange, borderSize);
        /*
        关于range_image.createFromPointCloud()参数的解释 (涉及的角度都为弧度为单位) :
        point_cloud为创建深度图像所需要的点云
        angular_resolution_x深度传感器X方向的角度分辨率
        angular_resolution_y深度传感器Y方向的角度分辨率
        pcl::deg2rad (360.0f)深度传感器的水平最大采样角度
        pcl::deg2rad (180.0f)垂直最大采样角度
        scene_sensor_pose设置的模拟传感器的位姿是一个仿射变换矩阵,默认为4*4的单位矩阵变换
        coordinate_frame定义按照那种坐标系统的习惯  默认为CAMERA_FRAME
        noise_level  获取深度图像深度时,邻近点对查询点距离值的影响水平
        min_range 设置最小的获取距离,小于最小的获取距离的位置为传感器的盲区
        border_size  设置获取深度图像边缘的宽度 默认为0
        */
        std::cout << rangeImage << "\n";
        // --------------------------------------------
        // -----Open 3D viewer and add point cloud-----
        // --------------------------------------------
        pcl::visualization::PCLVisualizer viewer("3D Viewer");
        viewer.setBackgroundColor(1, 1, 1);
        // 添加深度图点云
        pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler(range_image_ptr, 0, 0, 0);
        viewer.addPointCloud(range_image_ptr, range_image_color_handler, "range image");
        viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 4, "range image");
    
        // 添加原始点云
        pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> org_image_color_handler(pointCloudPtr, 255, 100, 0);
        viewer.addPointCloud(pointCloudPtr, org_image_color_handler, "orginal image");
        viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "orginal image");
    
        viewer.initCameraParameters();
        viewer.addCoordinateSystem(1.0);
    
        //--------------------
        // -----Main loop-----
        //--------------------
        while (!viewer.wasStopped())
        {
            viewer.spinOnce();
            pcl_sleep(0.01);
        }
        return (0);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • CMakeLists.txt
    cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
    
    project(cloud_viewer)
    
    find_package(PCL 1.2 REQUIRED)
    
    add_executable (range_image_creation range_image_creation.cpp)
    target_link_libraries (range_image_creation ${PCL_LIBRARIES} pthread boost_thread)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 结果

    黑色点为深度图点云,橙色点为原始点云
    在这里插入图片描述

    3. 边界提取

    参考双愚的代码和博客《02-深度图》

    下方代码目前会报错,暂时找不到原因~

    • CMakeLists.txt
    cmake_minimum_required(VERSION 2.8 FATAL_ERROR)
    
    project(cloud_viewer)
    
    find_package(PCL 1.2 REQUIRED)
    
    add_executable (range_image_border_extraction border_extraction.cpp)
    target_link_libraries (range_image_border_extraction ${PCL_LIBRARIES} pthread boost_thread)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • border_extraction.cpp
    /*
     * @Description:  如何从深度图像中提取边界
    http://robot.czxy.com/docs/pcl/chapter02/range_image/#_5
    https://www.cnblogs.com/li-yao7758258/p/6476046.html
     * @Author: HCQ
     * @Company(School): UCAS
     * @Email: 1756260160@qq.com
     * @Date: 2020-10-21 15:57:52
     * @LastEditTime: 2022-12-05 23:06:43
     * @FilePath: /pcl-learning/06range-images深度图像/2从深度图中提取边界/range_image_border_extraction.cpp
     */
    #include 
    
    #include 
    #include 
    #include 
    #include 
    #include 
    #include    // 深度图提取便边界库
    #include 
    
    typedef pcl::PointXYZ PointType;
    
    // --------------------
    // -----Parameters-----
    // --------------------
    float angular_resolution = 0.5f;
    pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
    bool setUnseenToMaxRange = false;
    
    // --------------
    // -----Help-----
    // --------------
    void 
    printUsage (const char* progName)
    {
      std::cout << "\n\nUsage: "<<progName<<" [options] \n\n"
                << "Options:\n"
                << "-------------------------------------------\n"
                << "-r    angular resolution in degrees (default "<<angular_resolution<<")\n"
                << "-c      coordinate frame (default "<< (int)coordinate_frame<<")\n"
                << "-m           Treat all unseen points to max range\n"
                << "-h           this help\n"
                << "\n\n";
    }
    
    // --------------
    // -----Main-----
    // --------------
    int 
    main (int argc, char** argv)
    {
      // --------------------------------------
      // -----Parse Command Line Arguments-----
      // --------------------------------------
      if (pcl::console::find_argument (argc, argv, "-h") >= 0)
      {
        printUsage (argv[0]);
        return 0;
      }
      if (pcl::console::find_argument (argc, argv, "-m") >= 0)
      {
        setUnseenToMaxRange = true;
        cout << "Setting unseen values in range image to maximum range readings.\n";
      }
      int tmp_coordinate_frame;
      if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
      {
        coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
        cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
      }
      if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
        cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
      angular_resolution = pcl::deg2rad (angular_resolution);
      
      // ------------------------------------------------------------------
      // -----Read pcd file or create example point cloud if not given-----
      // ------------------------------------------------------------------
      pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
      pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
      pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
      Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());  //传感器的位置
      std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
      if (!pcd_filename_indices.empty ())
      {
        std::string filename = argv[pcd_filename_indices[0]];
        if (pcl::io::loadPCDFile (filename, point_cloud) == -1)   //打开文件
        {
          cout << "Was not able to open file \""<<filename<<"\".\n";
          printUsage (argv[0]);
          return 0;
        }
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                                   point_cloud.sensor_origin_[1],
                                                                   point_cloud.sensor_origin_[2])) *
                            Eigen::Affine3f (point_cloud.sensor_orientation_);  //仿射变换矩阵
      
        // std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd"; // 文件
        // if (pcl::io::loadPCDFile(far_ranges_filename.c_str(), far_ranges) == -1)
        //   std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
      }
      else
      {
        cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
        for (float x=-0.5f; x<=0.5f; x+=0.01f)      //填充一个矩形的点云
        {
          for (float y=-0.5f; y<=0.5f; y+=0.01f)
          {
            PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
            point_cloud.points.push_back (point);   
          }
        }
        point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
      }
      
      // -----------------------------------------------
      // -----Create RangeImage from the PointCloud-----
      // -----------------------------------------------
      float noise_level = 0.0;      //各种参数的设置
      float min_range = 0.0f;
      int border_size = 1;
      boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
      pcl::RangeImage& range_image = *range_image_ptr;   
      range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                       scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
      range_image.integrateFarRanges (far_ranges);
      if (setUnseenToMaxRange)
        range_image.setUnseenToMaxRange ();
    
      // --------------------------------------------
      // -----Open 3D viewer and add point cloud-----
      // --------------------------------------------
      pcl::visualization::PCLVisualizer viewer ("3D Viewer");   //创建视口
      viewer.setBackgroundColor (1, 1, 1);                      //设置背景颜色
      viewer.addCoordinateSystem (1.0f);              //设置坐标系
      pcl::visualization::PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 0, 0, 0);
      viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");   //添加点云
      //PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 150, 150, 150);
      //viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
      //viewer.setPointCloudRenderingProperties (PCL_VISUALIZER_POINT_SIZE, 2, "range image");
      
        /*
      // -------------------------
      // -----Extract borders提取边界的部分-----
      // -------------------------
      pcl::RangeImageBorderExtractor border_extractor (&range_image);
      pcl::PointCloud<pcl::BorderDescription> border_descriptions;
      border_extractor.compute (border_descriptions);     //提取边界计算描述子
      
    
      // -------------------------------------------------------
      // -----Show points in 3D viewer在3D 视口中显示点云-----
      // ----------------------------------------------------
      pcl::PointCloud<pcl::PointWithRange>::Ptr border_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),  //物体边界
                                                veil_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),     //veil边界
                                                shadow_points_ptr(new pcl::PointCloud<pcl::PointWithRange>);   //阴影边界
      pcl::PointCloud<pcl::PointWithRange>& border_points = *border_points_ptr,
                                          & veil_points = * veil_points_ptr,
                                          & shadow_points = *shadow_points_ptr;
    
      for (int y=0; y< (int)range_image.height; ++y)
      {
        for (int x=0; x< (int)range_image.width; ++x)
        {
          if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__OBSTACLE_BORDER])
            border_points.points.push_back (range_image.points[y*range_image.width + x]);
    
          if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__VEIL_POINT])
            veil_points.points.push_back (range_image.points[y*range_image.width + x]);
    
          if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__SHADOW_BORDER])
            shadow_points.points.push_back (range_image.points[y*range_image.width + x]);
        }
      }
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> border_points_color_handler (border_points_ptr, 0, 255, 0);
      viewer.addPointCloud<pcl::PointWithRange> (border_points_ptr, border_points_color_handler, "border points");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "border points");
    
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> veil_points_color_handler (veil_points_ptr, 255, 0, 0);
      viewer.addPointCloud<pcl::PointWithRange> (veil_points_ptr, veil_points_color_handler, "veil points");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "veil points");
    
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> shadow_points_color_handler (shadow_points_ptr, 0, 255, 255);
      viewer.addPointCloud<pcl::PointWithRange> (shadow_points_ptr, shadow_points_color_handler, "shadow points");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "shadow points");
      
      //-------------------------------------
      // -----Show points on range image-----
      // ------------------------------------
      pcl::visualization::RangeImageVisualizer* range_image_borders_widget = NULL;
      range_image_borders_widget =
        pcl::visualization::RangeImageVisualizer::getRangeImageBordersWidget (range_image, -std::numeric_limits<float>::infinity (), std::numeric_limits<float>::infinity (), false,
                                                                              border_descriptions, "Range image with borders");
      // -------------------------------------
      
      */
      //--------------------
      // -----Main loop-----
      //--------------------
      while (!viewer.wasStopped ())
      {
        //range_image_borders_widget->spinOnce ();
        viewer.spinOnce ();
        pcl_sleep(0.01);
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
  • 相关阅读:
    使用Apache ECharts同时绘制多个统计图表
    Git仓库4(分支操作冲突,标签管理)
    电脑不小心格式化了,怎么恢复?
    vue 免费的每天不限次数的调用天气接口
    [附源码]java毕业设计医院预约挂号管理系统
    【Unity基础】7.动画状态参数
    面试必知的9个性能测试指标,你完全了解吗?
    基于ssm停车管理系统毕业设计-附源码171046
    vue~要懂的有关node与npm
    Oracle中 insert all 语句用法详解
  • 原文地址:https://blog.csdn.net/qq_30841655/article/details/132831735