实现了残差网络,残差网络结构。代码比之前复杂很多
conv3x3:将输入数据进行一次卷积,将数据转换成为,残差块需要的shape大小
ResidualBlock:残差块,也是所谓的恒等块。为什么被称为恒等块,大概可以理解为经过几层卷积过后大小形状不变,并且能和输入相加;如果形状变了,那么输入也会利用一次卷积得到和残差块输出大小相同的数据块。
可以看到在残差块中有一个判断,就是判断输入数据是否被向下采样,也就是形状是否变化,如果变化就进行上述处理。
ResNet:构建一个完整的残差网络。传入参数是一个残差块的结构,还有每一层中残差块的个数元组。重点看以下其中的层次结构。
conv3x3:将输入图片变成16通道
输入通道数:16
layer1:输入通道:16,输出通道:16,padding = 0,stride = 0
layer2:输入通道:16,输出通道:32,padding = 0, stride = 2。由于输入不等于输出通道数,增加了一层卷积层,并且带有对应的stride。
layer3:输入通道:32,输出通道:64,其余同上
pooling:均值池化
fc:全连接
update_lr:在每个epoch之后实现对learning_rate的下降
同样由于加入了batchnorm层,测试时需要使用model.eval()
网络结构:
- ResNet(
- (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (layer1): Sequential(
- (0): ResidualBlock(
- (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- (1): ResidualBlock(
- (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- )
- (layer2): Sequential(
- (0): ResidualBlock(
- (conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (downsample): Sequential(
- (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- )
- (1): ResidualBlock(
- (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- )
- (layer3): Sequential(
- (0): ResidualBlock(
- (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (downsample): Sequential(
- (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
- (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- )
- (1): ResidualBlock(
- (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (relu): ReLU(inplace)
- (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
- (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- )
- )
- (avg_pool): AvgPool2d(kernel_size=8, stride=8, padding=0)
- (fc): Linear(in_features=64, out_features=10, bias=True)
- )
代码如下 :
- import torch
- import torch.nn as nn
- import torchvision
- import torchvision.transforms as transforms
-
-
- # Device configuration
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
- # Hyper-parameters
- num_epochs = 80
- learning_rate = 0.001
-
- # Image preprocessing modules
- transform = transforms.Compose([
- transforms.Pad(4),
- transforms.RandomHorizontalFlip(),
- transforms.RandomCrop(32),
- transforms.ToTensor()])
-
- # CIFAR-10 dataset
- train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
- train=True,
- transform=transform,
- download=True)
-
- test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
- train=False,
- transform=transforms.ToTensor())
-
- # Data loader
- train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
- batch_size=100,
- shuffle=True)
-
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
- batch_size=100,
- shuffle=False)
-
- # 3x3 convolution
- def conv3x3(in_channels, out_channels, stride=1):
- return nn.Conv2d(in_channels, out_channels, kernel_size=3,
- stride=stride, padding=1, bias=False)
-
- # Residual block
- class ResidualBlock(nn.Module):
- def __init__(self, in_channels, out_channels, stride=1, downsample=None):
- super(ResidualBlock, self).__init__()
- self.conv1 = conv3x3(in_channels, out_channels, stride)
- self.bn1 = nn.BatchNorm2d(out_channels)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(out_channels, out_channels)
- self.bn2 = nn.BatchNorm2d(out_channels)
- self.downsample = downsample
-
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
-
- # ResNet
- class ResNet(nn.Module):
- def __init__(self, block, layers, num_classes=10):
- super(ResNet, self).__init__()
- self.in_channels = 16
- self.conv = conv3x3(3, 16)
- self.bn = nn.BatchNorm2d(16)
- self.relu = nn.ReLU(inplace=True)
- self.layer1 = self.make_layer(block, 16, layers[0])
- self.layer2 = self.make_layer(block, 32, layers[1], 2)
- self.layer3 = self.make_layer(block, 64, layers[2], 2)
- self.avg_pool = nn.AvgPool2d(8)
- self.fc = nn.Linear(64, num_classes)
-
- def make_layer(self, block, out_channels, blocks, stride=1):
- downsample = None
- if (stride != 1) or (self.in_channels != out_channels):
- downsample = nn.Sequential(
- conv3x3(self.in_channels, out_channels, stride=stride),
- nn.BatchNorm2d(out_channels))
- layers = []
- layers.append(block(self.in_channels, out_channels, stride, downsample))
- self.in_channels = out_channels
- for i in range(1, blocks):
- layers.append(block(out_channels, out_channels))
- return nn.Sequential(*layers)
-
- def forward(self, x):
- out = self.conv(x)
- out = self.bn(out)
- out = self.relu(out)
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.avg_pool(out)
- out = out.view(out.size(0), -1)
- out = self.fc(out)
- return out
-
- model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
-
-
- # Loss and optimizer
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
-
- # For updating learning rate
- def update_lr(optimizer, lr):
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
- # Train the model
- total_step = len(train_loader)
- curr_lr = learning_rate
- for epoch in range(num_epochs):
- for i, (images, labels) in enumerate(train_loader):
- images = images.to(device)
- labels = labels.to(device)
-
- # Forward pass
- outputs = model(images)
- loss = criterion(outputs, labels)
-
- # Backward and optimize
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- if (i+1) % 100 == 0:
- print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
- .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
-
- # Decay learning rate
- if (epoch+1) % 20 == 0:
- curr_lr /= 3
- update_lr(optimizer, curr_lr)
-
- # Test the model
- model.eval()
- with torch.no_grad():
- correct = 0
- total = 0
- for images, labels in test_loader:
- images = images.to(device)
- labels = labels.to(device)
- outputs = model(images)
- _, predicted = torch.max(outputs.data, 1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
-
- print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
-
- # Save the model checkpoint
- torch.save(model.state_dict(), 'resnet.ckpt')