• Pytorch intermediate(二) ResNet


    实现了残差网络,残差网络结构。代码比之前复杂很多

    conv3x3:将输入数据进行一次卷积,将数据转换成为,残差块需要的shape大小

    ResidualBlock:残差块,也是所谓的恒等块。为什么被称为恒等块,大概可以理解为经过几层卷积过后大小形状不变,并且能和输入相加;如果形状变了,那么输入也会利用一次卷积得到和残差块输出大小相同的数据块。

           可以看到在残差块中有一个判断,就是判断输入数据是否被向下采样,也就是形状是否变化,如果变化就进行上述处理。

    ResNet:构建一个完整的残差网络。传入参数是一个残差块的结构,还有每一层中残差块的个数元组。重点看以下其中的层次结构。

           conv3x3:将输入图片变成16通道

           输入通道数:16

           layer1:输入通道:16,输出通道:16,padding = 0,stride = 0

           layer2:输入通道:16,输出通道:32,padding = 0, stride = 2。由于输入不等于输出通道数,增加了一层卷积层,并且带有对应的stride。

           layer3:输入通道:32,输出通道:64,其余同上

           pooling:均值池化

           fc:全连接


           update_lr:在每个epoch之后实现对learning_rate的下降

           同样由于加入了batchnorm层,测试时需要使用model.eval()


    网络结构:

    1. ResNet(
    2. (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    3. (bn): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    4. (relu): ReLU(inplace)
    5. (layer1): Sequential(
    6. (0): ResidualBlock(
    7. (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    8. (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    9. (relu): ReLU(inplace)
    10. (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    11. (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    12. )
    13. (1): ResidualBlock(
    14. (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    15. (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    16. (relu): ReLU(inplace)
    17. (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    18. (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    19. )
    20. )
    21. (layer2): Sequential(
    22. (0): ResidualBlock(
    23. (conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    24. (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    25. (relu): ReLU(inplace)
    26. (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    27. (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    28. (downsample): Sequential(
    29. (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    30. (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    31. )
    32. )
    33. (1): ResidualBlock(
    34. (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    35. (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    36. (relu): ReLU(inplace)
    37. (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    38. (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    39. )
    40. )
    41. (layer3): Sequential(
    42. (0): ResidualBlock(
    43. (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    44. (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    45. (relu): ReLU(inplace)
    46. (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    47. (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    48. (downsample): Sequential(
    49. (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    50. (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    51. )
    52. )
    53. (1): ResidualBlock(
    54. (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    55. (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    56. (relu): ReLU(inplace)
    57. (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    58. (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    59. )
    60. )
    61. (avg_pool): AvgPool2d(kernel_size=8, stride=8, padding=0)
    62. (fc): Linear(in_features=64, out_features=10, bias=True)
    63. )

    代码如下 :

    1. import torch
    2. import torch.nn as nn
    3. import torchvision
    4. import torchvision.transforms as transforms
    5. # Device configuration
    6. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    7. # Hyper-parameters
    8. num_epochs = 80
    9. learning_rate = 0.001
    10. # Image preprocessing modules
    11. transform = transforms.Compose([
    12. transforms.Pad(4),
    13. transforms.RandomHorizontalFlip(),
    14. transforms.RandomCrop(32),
    15. transforms.ToTensor()])
    16. # CIFAR-10 dataset
    17. train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
    18. train=True,
    19. transform=transform,
    20. download=True)
    21. test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
    22. train=False,
    23. transform=transforms.ToTensor())
    24. # Data loader
    25. train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
    26. batch_size=100,
    27. shuffle=True)
    28. test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
    29. batch_size=100,
    30. shuffle=False)
    31. # 3x3 convolution
    32. def conv3x3(in_channels, out_channels, stride=1):
    33. return nn.Conv2d(in_channels, out_channels, kernel_size=3,
    34. stride=stride, padding=1, bias=False)
    35. # Residual block
    36. class ResidualBlock(nn.Module):
    37. def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    38. super(ResidualBlock, self).__init__()
    39. self.conv1 = conv3x3(in_channels, out_channels, stride)
    40. self.bn1 = nn.BatchNorm2d(out_channels)
    41. self.relu = nn.ReLU(inplace=True)
    42. self.conv2 = conv3x3(out_channels, out_channels)
    43. self.bn2 = nn.BatchNorm2d(out_channels)
    44. self.downsample = downsample
    45. def forward(self, x):
    46. residual = x
    47. out = self.conv1(x)
    48. out = self.bn1(out)
    49. out = self.relu(out)
    50. out = self.conv2(out)
    51. out = self.bn2(out)
    52. if self.downsample:
    53. residual = self.downsample(x)
    54. out += residual
    55. out = self.relu(out)
    56. return out
    57. # ResNet
    58. class ResNet(nn.Module):
    59. def __init__(self, block, layers, num_classes=10):
    60. super(ResNet, self).__init__()
    61. self.in_channels = 16
    62. self.conv = conv3x3(3, 16)
    63. self.bn = nn.BatchNorm2d(16)
    64. self.relu = nn.ReLU(inplace=True)
    65. self.layer1 = self.make_layer(block, 16, layers[0])
    66. self.layer2 = self.make_layer(block, 32, layers[1], 2)
    67. self.layer3 = self.make_layer(block, 64, layers[2], 2)
    68. self.avg_pool = nn.AvgPool2d(8)
    69. self.fc = nn.Linear(64, num_classes)
    70. def make_layer(self, block, out_channels, blocks, stride=1):
    71. downsample = None
    72. if (stride != 1) or (self.in_channels != out_channels):
    73. downsample = nn.Sequential(
    74. conv3x3(self.in_channels, out_channels, stride=stride),
    75. nn.BatchNorm2d(out_channels))
    76. layers = []
    77. layers.append(block(self.in_channels, out_channels, stride, downsample))
    78. self.in_channels = out_channels
    79. for i in range(1, blocks):
    80. layers.append(block(out_channels, out_channels))
    81. return nn.Sequential(*layers)
    82. def forward(self, x):
    83. out = self.conv(x)
    84. out = self.bn(out)
    85. out = self.relu(out)
    86. out = self.layer1(out)
    87. out = self.layer2(out)
    88. out = self.layer3(out)
    89. out = self.avg_pool(out)
    90. out = out.view(out.size(0), -1)
    91. out = self.fc(out)
    92. return out
    93. model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
    94. # Loss and optimizer
    95. criterion = nn.CrossEntropyLoss()
    96. optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    97. # For updating learning rate
    98. def update_lr(optimizer, lr):
    99. for param_group in optimizer.param_groups:
    100. param_group['lr'] = lr
    101. # Train the model
    102. total_step = len(train_loader)
    103. curr_lr = learning_rate
    104. for epoch in range(num_epochs):
    105. for i, (images, labels) in enumerate(train_loader):
    106. images = images.to(device)
    107. labels = labels.to(device)
    108. # Forward pass
    109. outputs = model(images)
    110. loss = criterion(outputs, labels)
    111. # Backward and optimize
    112. optimizer.zero_grad()
    113. loss.backward()
    114. optimizer.step()
    115. if (i+1) % 100 == 0:
    116. print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
    117. .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    118. # Decay learning rate
    119. if (epoch+1) % 20 == 0:
    120. curr_lr /= 3
    121. update_lr(optimizer, curr_lr)
    122. # Test the model
    123. model.eval()
    124. with torch.no_grad():
    125. correct = 0
    126. total = 0
    127. for images, labels in test_loader:
    128. images = images.to(device)
    129. labels = labels.to(device)
    130. outputs = model(images)
    131. _, predicted = torch.max(outputs.data, 1)
    132. total += labels.size(0)
    133. correct += (predicted == labels).sum().item()
    134. print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
    135. # Save the model checkpoint
    136. torch.save(model.state_dict(), 'resnet.ckpt')

  • 相关阅读:
    二十三种设计模式-解密状态模式:优雅地管理对象状态
    数模电路基础知识 —— 7. PN结与二极管的工作原理
    怎么通过Fiddler对APP进行抓包?以及高级应用场景分析
    ImportError: Unknown magic number 3495 in test.pyc
    图片转文字怎么转?这些方法我只告诉你
    【C++】类和对象(下)(再谈构造函数 初始化列表 explicit关键字 static成员 特性 友元 友元函数 友元类 内部类 匿名对象)
    web自动化测试-Selenium语法入门到精通
    vue管理系统列表行按钮过多, 封装更多组件
    勒索软件安全防护手册
    ESP8266-Arduino编程实例-SHT21温度湿度传感器驱动
  • 原文地址:https://blog.csdn.net/qq_41828351/article/details/90740831