• cmu中间代码groud_based_autonomy_basic在适配不同机器人时主要修改的参数


    1.根据使用的slam算法,loam_interface需要修改launch, 具体如何修改其官方给出了文档,

    1. If running on a real robot, launch state estimation module and the system side by side. Use the
    2. command below to launch the system.
    3. roslaunch vehicle_simulator system_real_robot.launch
    4. If playing bagfiles, make sure to set 'use_sim_time = true'. In a terminal,
    5. roscore
    6. In another terminal,
    7. rosparam set use_sim_time true
    8. After launching the state estimation module and the system, play bagfiles with '--clock' flag
    9. (change 'filename' in the command line),
    10. rosbag play --clock filename.bag
    11. Adjust 'obstacleHeightThre' in 'src/local_planner/launch/local_planner.launch' to account for
    12. terrain cloud thickness.
    13. LOAM
    14. Notes: Use 'loam_interface' package as is to bridge over the state estimation output.
    15. Code: https://github.com/cuitaixiang/LOAM_NOTED
    16. Reference: J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time. Robotics:
    17. Science and Systems Conference (RSS). Berkeley, CA, July 2014.
    18. A-LOAM (lidar only without IMU)
    19. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'stateEstimationTopic =
    20. /aft_mapped_to_init_high_frec', 'flipStateEstimation = false', and 'flipRegisteredScan = false'.
    21. Code: https://github.com/HKUST-Aerial-Robotics/A-LOAM
    22. Reference: N/A
    23. LeGO-LOAM
    24. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'registeredScanTopic =
    25. /registered_cloud'.
    26. Code: https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
    27. Reference: T. Shan and B. Englot. LeGO-LOAM: Lightweight and Ground-Optimized Lidar
    28. Odometry and Mapping on Variable Terrain. IEEE/RSJ Intl. Conf. on Intelligent Robots and
    29. Systems (IROS). Madrid, Spain, Oct. 2018.LIO-SAM
    30. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'stateEstimationTopic =
    31. /lio_sam/mapping/odometry', 'registeredScanTopic = /lio_sam/mapping/cloud_registered',
    32. 'flipStateEstimation = false', and 'flipRegisteredScan = false'.
    33. Code: https://github.com/TixiaoShan/LIO-SAM
    34. Reference: T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. LIO-SAM: Tightly-
    35. coupled Lidar Inertial Odometry via Smoothing and Mapping. IEEE/RSJ Intl. Conf. on Intelligent
    36. Robots and Systems (IROS). Las Vegas, Nevada, Oct. 2020.
    37. LIO-mapping
    38. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'stateEstimationTopic =
    39. /lio_map_builder/aft_mapped_to_init', 'registeredScanTopic =
    40. /lio_map_builder/cloud_registered', 'flipStateEstimation = false', and 'flipRegisteredScan =
    41. false'.
    42. Code: https://github.com/hyye/lio-mapping
    43. Reference: H. Ye, Y. Chen, and M. Liu. Tightly Coupled 3D Lidar Inertial Odometry and
    44. Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA). Montreal, Canada, May 2019.
    45. FAST-LIO2
    46. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'stateEstimationTopic =
    47. /Odometry', 'registeredScanTopic = /cloud_registered', 'flipStateEstimation = false', and
    48. 'flipRegisteredScan = false'.
    49. Code: https://github.com/hku-mars/FAST_LIO
    50. Reference: W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang. FAST-LIO2: Fast Direct LiDAR-Inertial
    51. Odometry. IEEE Transactions on Robotics. vol. 38, no. 4, pp. 20532073, 2022.
    52. Faster-LIO
    53. Notes: In 'src/loam_interface/launch/loam_interface.launch', set 'stateEstimationTopic =
    54. /Odometry', 'registeredScanTopic = /cloud_registered', 'flipStateEstimation = false', and
    55. 'flipRegisteredScan = false'.
    56. Code: https://github.com/gaoxiang12/faster-lio
    57. Reference: C. Bai, T. Xiao, Y. Chen, H. Wang, F. Zhang, and X. Gao. Faster-LIO: Lightweight
    58. Tightly Coupled Lidar-Inertial Odometry Using Parallel Sparse Incremental Voxels. IEEE Robotics
    59. and Automation Letters. vol. 7, no. 2, pp. 48614868, 2022.

    2.local_planner

    local_planner.launch中

     false-只能前进去目标点

     最大线速度

     自动模式

     自动运动时的线速度

    type="string" value="$(find local_planner)/paths" />这个是黄色的局部曲线,根据机器人的外接圆进行修改,如机器人为一个长方体,长L,宽w,则path_generator.m中的 Radius >= sqrt(pow(L/2,2) + pow(W/2,2)),可以稍微大一点.

    宽度可以稍微大个0.1,这个会计算一个半径,因为差速底盘尤其四轮差速有一个中情况就是转向时,障碍物在其侧面,如果点云被包含在这个半径内且在侧面,会对路径作出调整

    在室内结构化平坦场地时不使用地形分析的点云使用slam配准后的scan_registered也可以,不过最好使用地形分析的

    对应差速度底盘设置为true,,因为其旋转时四差底盘可能碰撞

    局部路径的探测范围,就是那个黄色线的范围

    点云相对高度大于这个值才认为是障碍物点云点,但是高度是一个相对高度,所以根据实际情况设置

    这个在考虑地形分析点云或者点云点高度大于障碍物阈值时,对路径进行惩罚,当点云点高度大于地面高度时这个路径才会被惩罚,根据实际工况进行调试

    /*********************************************************************************************/

    local_planner.launch中对path_follow.cpp的配置,这其中有几个比较重要的参数

    首先需要设定的是需要的线速度和最大线速度,这个在最开始设置.然后根据这个设置

    yawRateGain" type="double" value="1" />默认是7.5,

    这个用来增加角速度的,根据线速度调试确定,否则摆动很大前进时

    ,这个同上面类似,是减角速度的,需跟线速度协调

    最大角速度,默认90度,这个也是根线速度协调

    最大加速度,也是与线速度协调,因为会用这个对线速度进行加速和减速

    重要参数,当目标点与机器人之间的角度差阈值大于这个,则减速.

  • 相关阅读:
    opencv(4):颜色空间
    典型海洋环境观测数据产品应用现状及对我国的启示
    ubuntu下python安装wx包出错解决办法
    JAVA毕业设计分享网站计算机源码+lw文档+系统+调试部署+数据库
    MTK RILD 无法启动问题分析
    aqistudy真气网JS逆向 + 数据采集(20220801)
    【秋招面经搬运】字节一面
    vue-cli复习
    使用pandas批量重命名(指定Excel中的对应列)
    macOS 下JD-GUI报JDK1.8+的问题
  • 原文地址:https://blog.csdn.net/dwell548560/article/details/132509003