给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。
- const int dx[4] = {1, -1, 0, 0};
- const int dy[4] = {0, 0, 1, -1};
-
- void solve(char** board, int boardSize, int* boardColSize) {
- int n = boardSize;
- if (n == 0) {
- return;
- }
- int m = boardColSize[0];
-
- int** que = (int**)malloc(sizeof(int*) * n * m);
- for (int i = 0; i < n * m; i++) {
- que[i] = (int*)malloc(sizeof(int) * 2);
- }
- int l = 0, r = 0;
- for (int i = 0; i < n; i++) {
- if (board[i][0] == 'O') {
- board[i][0] = 'A';
- que[r][0] = i, que[r++][1] = 0;
- }
- if (board[i][m - 1] == 'O') {
- board[i][m - 1] = 'A';
- que[r][0] = i, que[r++][1] = m - 1;
- }
- }
- for (int i = 1; i < m - 1; i++) {
- if (board[0][i] == 'O') {
- board[0][i] = 'A';
- que[r][0] = 0, que[r++][1] = i;
- }
- if (board[n - 1][i] == 'O') {
- board[n - 1][i] = 'A';
- que[r][0] = n - 1, que[r++][1] = i;
- }
- }
- while (l < r) {
- int x = que[l][0], y = que[l][1];
- l++;
- for (int i = 0; i < 4; i++) {
- int mx = x + dx[i], my = y + dy[i];
- if (mx < 0 || my < 0 || mx >= n || my >= m || board[mx][my] != 'O') {
- continue;
- }
- board[mx][my] = 'A';
- que[r][0] = mx, que[r++][1] = my;
- }
- }
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < m; j++) {
- if (board[i][j] == 'A') {
- board[i][j] = 'O';
- } else if (board[i][j] == 'O') {
- board[i][j] = 'X';
- }
- }
- }
- for (int i = 0; i < n * m; i++) {
- free(que[i]);
- }
- free(que);
- }
本题若从内向外分析则难以判断是否需要将O替换为X,所以从外向内分析。从外向内分析时可考虑将最外层的O先替换为A,再判断内部O是否与A相邻,并设置方向数组方便判断方向,最后从外向内递归数组即可完成
本题考察对深度优先搜索的应用,分析出从外向内不断判断的方法,再将边界情况考虑清楚即可解决