题意:

思路:
感觉是个套路题
对区间计数,按照CF惯用套路,枚举其中一个端点,对另一个端点计数
对于这道题,枚举右端点,对左端点计数

Code:
- #include
-
- #define int long long
-
- using i64 = long long;
-
- constexpr int N = 1e6 + 10;
- constexpr int M = 1e6 + 10;
- constexpr int P = 2600;
- constexpr i64 Inf = 1e18;
- constexpr int mod = 1e9 + 7;
- constexpr double eps = 1e-6;
-
- struct Segtree {
- int val, lazy;
- }tr[N << 2];
-
- int n;
- int a[N];
- int lmi[N], lmx[N];
-
- void pushup(int rt) {
- tr[rt].val = tr[rt << 1].val + tr[rt << 1 | 1].val;
- }
- void build(int rt, int l, int r) {
- if (l == r) {
- tr[rt].val = 0;
- tr[rt].lazy = -1;
- return;
- }
- int mid = l + r >> 1;
- build(rt << 1, l, mid);
- build(rt << 1 | 1, mid + 1, r);
- pushup(rt);
- }
- void pushdown(int rt, int tot) {
- tr[rt << 1].lazy = tr[rt].lazy;
- tr[rt << 1 | 1].lazy = tr[rt].lazy;
- tr[rt << 1].val = (tot - tot / 2) * (tr[rt].lazy? 1 : 0);
- tr[rt << 1 | 1].val = (tot / 2) * (tr[rt].lazy? 1 : 0);
- tr[rt].lazy = -1;
- }
- void modify(int rt, int l, int r, int x, int y, int k) {
- if (x <= l && r <= y) {
- tr[rt].lazy = k;
- tr[rt].val = k * (r - l + 1);
- return;
- }
- if (tr[rt].lazy != -1) pushdown(rt, r - l + 1);
- int mid = l + r >> 1;
- if (x <= mid) modify(rt << 1, l, mid, x, y, k);
- if (y > mid) modify(rt << 1 | 1, mid + 1, r, x, y, k);
- pushup(rt);
- }
- void solve() {
- std::cin >> n;
- for (int i = 1; i <= n; i ++) {
- std::cin >> a[i];
- }
-
- std::stack<int> S, S2;
- for (int i = 1; i <= n; i ++) {
- while(!S.empty() && a[S.top()] >= a[i]) S.pop();
- lmi[i] = S.empty() ? 0 : S.top();
- S.push(i);
- }
-
- for (int i = 1; i <= n; i ++) {
- while(!S2.empty() && a[S2.top()] <= a[i]) S2.pop();
- lmx[i] = S2.empty() ? 0 : S2.top();
- S2.push(i);
- }
-
- build(1, 1, n);
-
- int ans = 0;
- for (int r = 1; r <= n; r ++) {
- if (lmi[r] + 1 <= r - 1) modify(1, 1, n, lmi[r] + 1, r - 1, 0);
- if (lmx[r] + 1 <= r - 1) modify(1, 1, n, lmx[r] + 1, r - 1, 1);
- ans += tr[1].val;
- }
-
- std::cout << ans << "\n";
- }
- signed main() {
- std::ios::sync_with_stdio(false);
- std::cin.tie(nullptr);
-
- int t = 1;
-
- while (t--) {
- solve();
- }
-
- return 0;
- }