本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归# 5、数据预处理
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from linear_regression import LinearRegression
首先是导包numpy、pandas、matplotlib素质三连,从文件中linear_regression导入类
data = pd.read_csv('../data/world-happiness-report-2017.csv')
train_data = data.sample(frac = 0.8)
test_data = data.drop(train_data.index)
input_param_name = 'Economy..GDP.per.Capita.'
output_param_name = 'Happiness.Score'
x_train = train_data[[input_param_name]].values
y_train = train_data[[output_param_name]].values
x_test = test_data[input_param_name].values
y_test = test_data[output_param_name].values
plt.scatter(x_train,y_train,label='Train data')
plt.scatter(x_test,y_test,label='test data')
plt.xlabel(input_param_name)
plt.ylabel(output_param_name)
plt.title('Happy')
plt.legend()
plt.show()
打印结果:

num_iterations = 500
learning_rate = 0.01
linear_regression = LinearRegression(x_train,y_train)
(theta,cost_history) = linear_regression.train(learning_rate,num_iterations)
print ('开始时的损失:',cost_history[0])
print ('训练后的损失:',cost_history[-1])
打印结果:
开始时的损失: 14.633306098916812
训练后的损失: 0.2275173194286417
plt.plot(range(num_iterations),cost_history)
plt.xlabel('Iter')
plt.ylabel('cost')
plt.title('GD')
plt.show()
打印结果:

predictions_num = 100
x_predictions = np.linspace(x_train.min(),x_train.max(),predictions_num).reshape(predictions_num,1)
y_predictions = linear_regression.predict(x_predictions)
plt.scatter(x_train,y_train,label='Train data')
plt.scatter(x_test,y_test,label='test data')
plt.plot(x_predictions,y_predictions,'r',label = 'Prediction')
plt.xlabel(input_param_name)
plt.ylabel(output_param_name)
plt.title('Happy')
plt.legend()
plt.show()
打印结果:

机器学习开发流程中一定有一个数据预处理的重要流程,在很多实际的任务中,数据预处理甚至比网络设计更复杂更重要。
这部分函数主要为了将原始数据放入到一个合适的范围内,一般是[0,1]的范围或者[-1,1]的范围,人能识别数据,计算机只识别数字,机器学习只能认识特征
def normalize(features):
features_normalized = np.copy(features).astype(float)
features_mean = np.mean(features, 0)
features_deviation = np.std(features, 0)
if features.shape[0] > 1:
features_normalized -= features_mean
features_deviation[features_deviation == 0] = 1
features_normalized /= features_deviation
return features_normalized, features_mean, features_deviation
在此次的数据预处理中只用到了归一化操作
def prepare_for_training(data, polynomial_degree=0, sinusoid_degree=0, normalize_data=True):
num_examples = data.shape[0]
data_processed = np.copy(data)
features_mean = 0
features_deviation = 0
data_normalized = data_processed
if normalize_data:
(data_normalized, features_mean, features_deviation ) = normalize(data_processed)
data_processed = data_normalized
if sinusoid_degree > 0:
sinusoids = generate_sinusoids(data_normalized, sinusoid_degree)
data_processed = np.concatenate((data_processed, sinusoids), axis=1)
if polynomial_degree > 0:
polynomials = generate_polynomials(data_normalized, polynomial_degree, normalize_data)
data_processed = np.concatenate((data_processed, polynomials), axis=1)
data_processed = np.hstack((np.ones((num_examples, 1)), data_processed))
return data_processed, features_mean, features_deviation
单特征线性回归整体流程,从Non-linearRegression.py文件的这行代码开始:
data = pd.read_csv(‘…/data/non-linear-regression-x-y.csv’)
手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归