
- import os
- import matplotlib.pyplot as plt
- %matplotlib inline
- import numpy as np
- import torch
- from torch import nn
- import torch.optim as optim
- import torchvision
- #pip install torchvision
- from torchvision import transforms, models, datasets
- #https://pytorch.org/docs/stable/torchvision/index.html
- import imageio
- import time
- import warnings
- warnings.filterwarnings("ignore")
- import random
- import sys
- import copy
- import json
- from PIL import Image
- data_dir = './flower_data/'
- train_dir = data_dir + '/train'
- valid_dir = data_dir + '/valid'
- data_transforms = {
- 'train':
- transforms.Compose([
- transforms.Resize([96, 96]),
- transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
- transforms.CenterCrop(64),#从中心开始裁剪
- transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
- transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
- transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
- transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
- ]),
- 'valid':
- transforms.Compose([
- transforms.Resize([64, 64]),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
- ]),
- }
- batch_size = 128
-
- image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
- dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
- dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
- class_names = image_datasets['train'].classes
image_datasets {'train': Dataset ImageFolder
Number of datapoints: 6552
Root location: ./flower_data/train
StandardTransform
Transform: Compose(
Resize(size=[96, 96], interpolation=bilinear, max_size=None, antialias=None)
RandomRotation(degrees=[-45.0, 45.0], interpolation=nearest, expand=False, fill=0)
CenterCrop(size=(64, 64))
RandomHorizontalFlip(p=0.5)
RandomVerticalFlip(p=0.5)
ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], hue=[-0.1, 0.1])
RandomGrayscale(p=0.025)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
), 'valid': Dataset ImageFolder
Number of datapoints: 818
Root location: ./flower_data/valid
StandardTransform
Transform: Compose(
Resize(size=[64, 64], interpolation=bilinear, max_size=None, antialias=None)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)} dataloaders {'train': ,
'valid': } dataset_sizes {'train': 6552, 'valid': 818} - with open('cat_to_name.json', 'r') as f:
- cat_to_name = json.load(f)
cat_to_name {'1': 'pink primrose',
'10': 'globe thistle',
'100': 'blanket flower',
'101': 'trumpet creeper',
'102': 'blackberry lily',
'11': 'snapdragon',
'12': "colt's foot",
'13': 'king protea',
'14': 'spear thistle',
'15': 'yellow iris',
'16': 'globe-flower',
'17': 'purple coneflower',
'18': 'peruvian lily',
'19': 'balloon flower',
'2': 'hard-leaved pocket orchid',
'20': 'giant white arum lily',
'21': 'fire lily',
'22': 'pincushion flower',
'23': 'fritillary',
'24': 'red ginger',
'25': 'grape hyacinth',
'26': 'corn poppy',
'27': 'prince of wales feathers',
'28': 'stemless gentian',
'29': 'artichoke',
'3': 'canterbury bells',
'30': 'sweet william',
'31': 'carnation',
'32': 'garden phlox',
'33': 'love in the mist',
'34': 'mexican aster',
'35': 'alpine sea holly',
'36': 'ruby-lipped cattleya',
'37': 'cape flower',
'38': 'great masterwort',
'39': 'siam tulip',
'4': 'sweet pea',
'40': 'lenten rose',
'41': 'barbeton daisy',
'42': 'daffodil',
'43': 'sword lily',
'44': 'poinsettia',
'45': 'bolero deep blue',
'46': 'wallflower',
'47': 'marigold',
'48': 'buttercup',
'49': 'oxeye daisy',
'5': 'english marigold',
'50': 'common dandelion',
'51': 'petunia',
'52': 'wild pansy',
'53': 'primula',
'54': 'sunflower',
'55': 'pelargonium',
'56': 'bishop of llandaff',
'57': 'gaura',
'58': 'geranium',
'59': 'orange dahlia',
'6': 'tiger lily',
'60': 'pink-yellow dahlia',
'61': 'cautleya spicata',
'62': 'japanese anemone',
'63': 'black-eyed susan',
'64': 'silverbush',
'65': 'californian poppy',
'66': 'osteospermum',
'67': 'spring crocus',
'68': 'bearded iris',
'69': 'windflower',
'7': 'moon orchid',
'70': 'tree poppy',
'71': 'gazania',
'72': 'azalea',
'73': 'water lily',
'74': 'rose',
'75': 'thorn apple',
'76': 'morning glory',
'77': 'passion flower',
'78': 'lotus lotus',
'79': 'toad lily',
'8': 'bird of paradise',
'80': 'anthurium',
'81': 'frangipani',
'82': 'clematis',
'83': 'hibiscus',
'84': 'columbine',
'85': 'desert-rose',
'86': 'tree mallow',
'87': 'magnolia',
'88': 'cyclamen',
'89': 'watercress',
'9': 'monkshood',
'90': 'canna lily',
'91': 'hippeastrum',
'92': 'bee balm',
'93': 'ball moss',
'94': 'foxglove',
'95': 'bougainvillea',
'96': 'camellia',
'97': 'mallow',
'98': 'mexican petunia',
'99': 'bromelia'} - model_name = 'resnet' #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
- #是否用人家训练好的特征来做
- feature_extract = True #都用人家特征,咱先不更新
- # 是否用GPU训练
- train_on_gpu = torch.cuda.is_available()
-
- if not train_on_gpu:
- print('CUDA is not available. Training on CPU ...')
- else:
- print('CUDA is available! Training on GPU ...')
-
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
CUDA is not available. Training on CPU ...
- def set_parameter_requires_grad(model, feature_extracting):
- if feature_extracting:
- for param in model.parameters():
- param.requires_grad = False
- model_ft = models.resnet18()#18层的能快点,条件好点的也可以选152
- model_ft
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=1000, bias=True) - def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
-
- model_ft = models.resnet18(pretrained=use_pretrained)
- set_parameter_requires_grad(model_ft, feature_extract)
-
- num_ftrs = model_ft.fc.in_features
- model_ft.fc = nn.Linear(num_ftrs, 102)#类别数自己根据自己任务来
-
- input_size = 64#输入大小根据自己配置来
-
- return model_ft, input_size
- model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
-
- #GPU还是CPU计算
- model_ft = model_ft.to(device)
-
- # 模型保存,名字自己起
- filename='checkpoint.pth'
-
- # 是否训练所有层
- params_to_update = model_ft.parameters()
- print("Params to learn:")
- if feature_extract:
- params_to_update = []
- for name,param in model_ft.named_parameters():
- if param.requires_grad == True:
- params_to_update.append(param)
- print("\t",name)
- else:
- for name,param in model_ft.named_parameters():
- if param.requires_grad == True:
- print("\t",name)
Params to learn: fc.weight fc.bias
model_ft ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=102, bias=True)
) - # 优化器设置
- optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#要训练啥参数,你来定
- scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
- criterion = nn.CrossEntropyLoss()
- def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):
- #咱们要算时间的
- since = time.time()
- #也要记录最好的那一次
- best_acc = 0
- #模型也得放到你的CPU或者GPU
- model.to(device)
- #训练过程中打印一堆损失和指标
- val_acc_history = []
- train_acc_history = []
- train_losses = []
- valid_losses = []
- #学习率
- LRs = [optimizer.param_groups[0]['lr']]
- #最好的那次模型,后续会变的,先初始化
- best_model_wts = copy.deepcopy(model.state_dict())
- #一个个epoch来遍历
- for epoch in range(num_epochs):
- print('Epoch {}/{}'.format(epoch, num_epochs - 1))
- print('-' * 10)
-
- # 训练和验证
- for phase in ['train', 'valid']:
- if phase == 'train':
- model.train() # 训练
- else:
- model.eval() # 验证
-
- running_loss = 0.0
- running_corrects = 0
-
- # 把数据都取个遍
- for inputs, labels in dataloaders[phase]:
- inputs = inputs.to(device)#放到你的CPU或GPU
- labels = labels.to(device)
-
- # 清零
- optimizer.zero_grad()
- # 只有训练的时候计算和更新梯度
- outputs = model(inputs)
- loss = criterion(outputs, labels)
- _, preds = torch.max(outputs, 1)
- # 训练阶段更新权重
- if phase == 'train':
- loss.backward()
- optimizer.step()
-
- # 计算损失
- running_loss += loss.item() * inputs.size(0)#0表示batch那个维度
- running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致
-
-
-
- epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均
- epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
-
- time_elapsed = time.time() - since#一个epoch我浪费了多少时间
- print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
- print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
-
-
- # 得到最好那次的模型
- if phase == 'valid' and epoch_acc > best_acc:
- best_acc = epoch_acc
- best_model_wts = copy.deepcopy(model.state_dict())
- state = {
- 'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
- 'best_acc': best_acc,
- 'optimizer' : optimizer.state_dict(),
- }
- torch.save(state, filename)
- if phase == 'valid':
- val_acc_history.append(epoch_acc)
- valid_losses.append(epoch_loss)
- #scheduler.step(epoch_loss)#学习率衰减
- if phase == 'train':
- train_acc_history.append(epoch_acc)
- train_losses.append(epoch_loss)
-
- print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
- LRs.append(optimizer.param_groups[0]['lr'])
- print()
- scheduler.step()#学习率衰减
-
- time_elapsed = time.time() - since
- print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
- print('Best val Acc: {:4f}'.format(best_acc))
-
- # 训练完后用最好的一次当做模型最终的结果,等着一会测试
- model.load_state_dict(best_model_wts)
- return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20) Epoch 0/19 ---------- Time elapsed 0m 39s train Loss: 4.0874 Acc: 0.2355 Time elapsed 0m 43s valid Loss: 3.5746 Acc: 0.2531 Optimizer learning rate : 0.0100000 Epoch 1/19 ---------- Time elapsed 1m 22s train Loss: 2.8185 Acc: 0.3953 Time elapsed 1m 26s valid Loss: 3.5450 Acc: 0.3142 Optimizer learning rate : 0.0100000 Epoch 2/19 ---------- Time elapsed 2m 5s train Loss: 2.7673 Acc: 0.4174 Time elapsed 2m 9s valid Loss: 3.9110 Acc: 0.2653 Optimizer learning rate : 0.0100000 Epoch 3/19 ---------- Time elapsed 2m 48s train Loss: 2.7962 Acc: 0.4255 Time elapsed 2m 52s valid Loss: 3.6922 Acc: 0.3142 Optimizer learning rate : 0.0100000 Epoch 4/19 ---------- Time elapsed 3m 32s train Loss: 2.7453 Acc: 0.4428 Time elapsed 3m 36s valid Loss: 3.9310 Acc: 0.3044 Optimizer learning rate : 0.0100000 Epoch 5/19 ---------- Time elapsed 4m 14s train Loss: 2.2935 Acc: 0.5043 Time elapsed 4m 18s valid Loss: 3.3299 Acc: 0.3435 Optimizer learning rate : 0.0010000 Epoch 6/19 ---------- Time elapsed 4m 57s train Loss: 2.0654 Acc: 0.5258 Time elapsed 5m 1s valid Loss: 3.2608 Acc: 0.3411 Optimizer learning rate : 0.0010000 Epoch 7/19 ---------- Time elapsed 5m 40s train Loss: 1.9603 Acc: 0.5369 Time elapsed 5m 44s valid Loss: 3.2618 Acc: 0.3472 Optimizer learning rate : 0.0010000 Epoch 8/19 ---------- Time elapsed 6m 23s train Loss: 1.9216 Acc: 0.5401 Time elapsed 6m 27s valid Loss: 3.1651 Acc: 0.3386 Optimizer learning rate : 0.0010000 Epoch 9/19 ---------- Time elapsed 7m 5s train Loss: 1.9203 Acc: 0.5458 Time elapsed 7m 9s valid Loss: 3.0449 Acc: 0.3680 Optimizer learning rate : 0.0010000 Epoch 10/19 ---------- Time elapsed 7m 48s train Loss: 1.8366 Acc: 0.5553 Time elapsed 7m 52s valid Loss: 3.0722 Acc: 0.3545 Optimizer learning rate : 0.0001000 Epoch 11/19 ---------- Time elapsed 8m 31s train Loss: 1.8324 Acc: 0.5546 Time elapsed 8m 35s valid Loss: 3.0115 Acc: 0.3643 Optimizer learning rate : 0.0001000 Epoch 12/19 ---------- Time elapsed 9m 13s train Loss: 1.8054 Acc: 0.5553 Time elapsed 9m 17s valid Loss: 3.0688 Acc: 0.3619 Optimizer learning rate : 0.0001000 Epoch 13/19 ---------- Time elapsed 9m 56s train Loss: 1.8436 Acc: 0.5534 Time elapsed 10m 0s valid Loss: 3.0100 Acc: 0.3631 Optimizer learning rate : 0.0001000 Epoch 14/19 ---------- Time elapsed 10m 39s train Loss: 1.7417 Acc: 0.5614 Time elapsed 10m 43s valid Loss: 3.0129 Acc: 0.3655 Optimizer learning rate : 0.0001000 Epoch 15/19 ---------- Time elapsed 11m 22s train Loss: 1.7610 Acc: 0.5672 Time elapsed 11m 26s valid Loss: 3.0220 Acc: 0.3606 Optimizer learning rate : 0.0000100 Epoch 16/19 ---------- Time elapsed 12m 6s train Loss: 1.7788 Acc: 0.5676 Time elapsed 12m 10s valid Loss: 3.0104 Acc: 0.3557 Optimizer learning rate : 0.0000100 Epoch 17/19 ---------- Time elapsed 12m 49s train Loss: 1.8033 Acc: 0.5638 Time elapsed 12m 53s valid Loss: 3.0428 Acc: 0.3606 Optimizer learning rate : 0.0000100 Epoch 18/19 ---------- Time elapsed 13m 33s train Loss: 1.8294 Acc: 0.5568 Time elapsed 13m 37s valid Loss: 3.0307 Acc: 0.3509 Optimizer learning rate : 0.0000100 Epoch 19/19 ---------- Time elapsed 14m 16s train Loss: 1.7949 Acc: 0.5612 Time elapsed 14m 20s valid Loss: 3.0396 Acc: 0.3643 Optimizer learning rate : 0.0000100 Training complete in 14m 20s Best val Acc: 0.367971
- for param in model_ft.parameters():
- param.requires_grad = True
-
- # 再继续训练所有的参数,学习率调小一点
- optimizer = optim.Adam(model_ft.parameters(), lr=1e-3)
- scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
-
- # 损失函数
- criterion = nn.CrossEntropyLoss()
- # 加载之前训练好的权重参数
-
- checkpoint = torch.load(filename)
- best_acc = checkpoint['best_acc']
- model_ft.load_state_dict(checkpoint['state_dict'])
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,) Epoch 0/9 ---------- Time elapsed 1m 32s train Loss: 2.2451 Acc: 0.4846 Time elapsed 1m 36s valid Loss: 2.3190 Acc: 0.4633 Optimizer learning rate : 0.0010000 Epoch 1/9 ---------- Time elapsed 2m 54s train Loss: 1.2920 Acc: 0.6505 Time elapsed 2m 58s valid Loss: 2.2263 Acc: 0.4670 Optimizer learning rate : 0.0010000 Epoch 2/9 ---------- Time elapsed 4m 15s train Loss: 1.1026 Acc: 0.6993 Time elapsed 4m 19s valid Loss: 1.8115 Acc: 0.5452 Optimizer learning rate : 0.0010000 Epoch 3/9 ---------- Time elapsed 5m 35s train Loss: 0.9062 Acc: 0.7515 Time elapsed 5m 39s valid Loss: 2.0045 Acc: 0.5403 Optimizer learning rate : 0.0010000 Epoch 4/9 ---------- Time elapsed 6m 56s train Loss: 0.8392 Acc: 0.7643 Time elapsed 7m 0s valid Loss: 2.1381 Acc: 0.5171 Optimizer learning rate : 0.0010000 Epoch 5/9 ---------- Time elapsed 8m 17s train Loss: 0.7081 Acc: 0.7953 Time elapsed 8m 21s valid Loss: 2.0461 Acc: 0.5599 Optimizer learning rate : 0.0010000 Epoch 6/9 ---------- Time elapsed 9m 38s train Loss: 0.6400 Acc: 0.8147 Time elapsed 9m 42s valid Loss: 2.2603 Acc: 0.5452 Optimizer learning rate : 0.0010000 Epoch 7/9 ---------- Time elapsed 10m 59s train Loss: 0.6406 Acc: 0.8117 Time elapsed 11m 3s valid Loss: 1.4649 Acc: 0.6406 Optimizer learning rate : 0.0010000 Epoch 8/9 ---------- Time elapsed 12m 20s train Loss: 0.5686 Acc: 0.8300 Time elapsed 12m 24s valid Loss: 1.7538 Acc: 0.6100 Optimizer learning rate : 0.0010000 Epoch 9/9 ---------- Time elapsed 13m 41s train Loss: 0.5978 Acc: 0.8245 Time elapsed 13m 45s valid Loss: 1.6953 Acc: 0.6161 Optimizer learning rate : 0.0010000 Training complete in 13m 45s Best val Acc: 0.640587
- model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
-
- # GPU模式
- model_ft = model_ft.to(device)
-
- # 保存文件的名字
- filename='best.pt'
-
- # 加载模型
- checkpoint = torch.load(filename)
- best_acc = checkpoint['best_acc']
- model_ft.load_state_dict(checkpoint['state_dict'])
- # 得到一个batch的测试数据
- dataiter = iter(dataloaders['valid'])
- images, labels = dataiter.next()
-
- model_ft.eval()
-
- if train_on_gpu:
- output = model_ft(images.cuda())
- else:
- output = model_ft(images)
output表示对一个batch中每一个数据得到其属于各个类别的可能性
output.shape - _, preds_tensor = torch.max(output, 1)
-
- preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
- preds
- array([ 34, 49, 43, 54, 20, 14, 49, 43, 50, 20, 19, 100, 78,
- 96, 96, 62, 62, 63, 32, 38, 82, 43, 88, 73, 6, 51,
- 43, 89, 55, 75, 55, 11, 46, 82, 48, 82, 20, 100, 48,
- 20, 24, 49, 76, 93, 49, 46, 90, 75, 89, 75, 76, 99,
- 56, 48, 77, 66, 60, 72, 89, 97, 76, 73, 17, 48, 39,
- 31, 19, 74, 61, 46, 93, 80, 27, 11, 91, 18, 23, 47,
- 29, 54, 18, 93, 1, 50, 79, 96, 39, 53, 63, 60, 49,
- 23, 23, 52, 99, 89, 3, 50, 64, 15, 19, 60, 19, 75,
- 50, 78, 82, 18, 75, 18, 82, 53, 3, 52, 60, 38, 62,
- 47, 21, 59, 81, 48, 89, 64, 60, 55, 100, 60], dtype=int64)
- def im_convert(tensor):
- """ 展示数据"""
-
- image = tensor.to("cpu").clone().detach()
- image = image.numpy().squeeze()
- image = image.transpose(1,2,0)
- image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
- image = image.clip(0, 1)
-
- return image
- fig=plt.figure(figsize=(20, 20))
- columns =4
- rows = 2
-
- for idx in range (columns*rows):
- ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
- plt.imshow(im_convert(images[idx]))
- ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
- color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
- plt.show()

