• redis多线程操作


    今天更新一个redis多线程操作, 可直接搬运

    import redis, os, threading, queue
    import pandas as pd
    
    # 创建一个任务队列
    task_queue = queue.Queue()
    
    
    def read_excel(folder_path):
    	total_list = []
    	for filepath, dirnames, filenames in os.walk(folder_path):
    		for filename in filenames:
    			file_path = os.path.join(filepath, filename)
    			df_total = pd.read_excel(file_path)
    			list_df = df_total['product'].values.tolist()
    			total_list.extend(list_df)
    	print(total_list)
    	print(len(total_list))
    	result_list = []
    	for t_pro in total_list:
    		t_pro_dict = {t_pro: '20230907'}
    		result_list.append(t_pro_dict)
    	# # 写入 redis
    	# redis_obj = RedisClass('ahrefs_filter', 9)
    	# for t_pro in total_list:
    	# 	t_pro_dict = {t_pro: '20230907'}
    	# 	print(t_pro_dict)
    	# 	redis_obj.insert_redis(t_pro_dict)
    	return result_list
    
    
    
    class RedisClass:
    	def __init__(self, db_key, db_index, db_host='*.*.*.*', db_port=6379, db_password='password', filter_start_index=0, filter_end_index=0):
    		# 传入DB表名,和DB序号
    		self.db_key = db_key
    		self.db_index = db_index
    		self.db_host = db_host
    		self.db_port = db_port
    		self.db_password = db_password
    		self.filter_start_index = filter_start_index
    		self.filter_end_index = filter_end_index
    
    		self.redis_pool = redis.ConnectionPool(host=self.db_host, port=self.db_port, password=self.db_password,
    											   db=self.db_index)
    		self.redis_conn = redis.Redis(connection_pool=self.redis_pool)
    
    	def count_redis_data(self):
    		# 计数: 获取redis中数据数量
    		return self.redis_conn.zcard(self.db_key)
    
    	def read_redis(self):
    		# 读取redis中全部数据
    		if self.filter_start_index == 0 and self.filter_end_index == 0:
    			# 如果无输入查询数量, 则全表查询
    			self.filter_end_index = self.redis_conn.zcard(self.db_key)
    		print('查询到的数量为: {}'.format(self.filter_end_index))
    		res_list = self.redis_conn.zrange(self.db_key, self.filter_start_index, self.filter_end_index)
    
    		return [res.decode('utf-8') for res in res_list]
    
    	def read_redis_by_score(self, zset_score):
    		# 读取redis中全部数据
    		res_list = self.redis_conn.zrangebyscore(self.db_key, zset_score, zset_score)
    
    		return [res.decode('utf-8') for res in res_list]
    
    	def insert_redis(self, redis_dict):
    		flag = False
    		self.redis_conn.zadd(self.db_key, redis_dict)
    		return flag
    
    
    # 生产者线程类
    class ProducerThread(threading.Thread):
    	def __init__(self, mysql_pro_info):
    		super().__init__()
    		self.mysql_pro_info = mysql_pro_info
    
    	def run(self):
    		for item in self.mysql_pro_info:
    			task_queue.put(item)
    			print(f"Produced by {self.name}: {item}")
    
    class ConsumerThread(threading.Thread):
    	def run(self):
    		redis_obj = RedisClass('ahrefs_filter', 9)
    		while True:
    			item = task_queue.get()
    			print(item)
    			redis_obj.insert_redis(item)
    
    
    if __name__ == '__main__':
    	# 1- 读取EXCEL中的数据, 存入redis
    	folder_path = r'C:\Users\admin\Desktop\0905型号'
    	total_list = read_excel(folder_path)
    
    	producer_thread = ProducerThread(total_list)
    	producer_thread.start()
    
    	for i in range(100):  # 创建100个消费者线程
    		consumer_thread = ConsumerThread()
    		consumer_thread.start()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
  • 相关阅读:
    流畅的Python读书笔记(五)序列:序列的排序及管理
    计网学习笔记六 Network Layer Overview
    JVM性能调优-二.流程步骤实践
    模型查搜相关研究
    Android --- Activity
    PDF能编辑修改吗?教你必备的几种编辑方法
    DB2 HADR+TSA运维,TSA添加资源组的命令
    Linux之grep风骚用法
    掌握区块链浏览器的使用,应该是每一个币圈人的必修课。
    linux下命令操作
  • 原文地址:https://blog.csdn.net/CSDN_Xying/article/details/132734263