• docker 笔记5:redis 集群分布式存储案例


    尚硅谷Docker实战教程(docker教程天花板)_哔哩哔哩_bilibili

    目录

    1.cluster(集群)模式-docker版哈希槽分区进行亿级数据存储 

    1.1面试题

    1.1.1  方案1 哈希取余分区

    1.1.2 方案2 一致性哈希算法分区 

    原理

    优点

    一致性哈希算法的容错性 

    一致性哈希算法的扩展性 

    缺点 

    一致性哈希算法的数据倾斜问题

    总结

    1.1.3 方案3 哈希槽分区

    3 多少个hash槽

    哈希槽计算

    2.3主3从redis集群扩缩容配置案例架构说明

    关闭防火墙+启动docker后台服务

    3.主从容错切换迁移案例

    3.1大纲 :

    3.2 数据读写存储

    4.主从扩容案例

    ​编辑 4.1新建6387、6388两个节点+新建后启动+查看是否8节点

    4.2  进入6387容器实例内部

    4.3 将新增的6387节点(空槽号)作为master节点加入原集群

    4.4检查集群情况第1次

    redis-cli --cluster check 真实ip地址:6381

    4.5 重新分派槽号

    4.6 检查集群情况第2次

    4.7 为主节点6387分配从节点6388

    4.8检查集群情况第3次

    5.主从缩容案例

    5.1检查集群情况1获得6388的节点ID

    ​编辑5.2将6387的槽号清空,重新分配,本例将清出来的槽号都给6381

    5.3检查集群情况第二次

     5.4将6387删除

    5.5检查集群情况第三次


    1.cluster(集群)模式-docker版
    哈希槽分区进行亿级数据存储 

    1.1面试题

    1~2亿条数据需要缓存,请问如何设计这个存储案例

    单机单台100%不可能,肯定是分布式存储,用redis如何落地?

    上述问题阿里P6~P7工程案例和场景设计类必考题目,
    一般业界有3种解决方案

    1.1.1  方案1 哈希取余分区

    2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:
    hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。

     优点:
      简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

     缺点
       原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
    某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

    1.1.2 方案2 一致性哈希算法分区 

    原理

    致性Hash算法背景(是什么?)
      一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决
    分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。

     提出一致性Hash解决方案。(能做什么?)
    目的是当服务器个数发生变动时,
    尽量减少影响客户端到服务器的映射关系

     3大步骤

    算法构建一致性哈希环

    一致性哈希环
        一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。
     
       它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1, 0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。

    服务器IP节点映射

       将集群中各个IP节点映射到环上的某一个位置。
       将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:  

    key落到服务器的落键规则

    当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
    如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

    优点

    一致性哈希算法的容错性      一致性哈希算法的扩展性

    一致性哈希算法的容错性 

    假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。

    一致性哈希算法的扩展性 

    数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那受到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,
    不会导致hash取余全部数据重新洗牌。

    缺点 
    一致性哈希算法的数据倾斜问题

     
    Hash环的数据倾斜问题
    一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,
    例如系统中只有两台服务器:

    总结

    为了在节点数目发生改变时尽可能少的迁移数据
     
    将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。
    当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。  
     
    优点
    加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
     
    缺点 
    数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。 

    1.1.3 方案3 哈希槽分区

    1 为什么出现?

     一致性哈希的数据倾斜问题

    哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。

    解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。

    解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。 

    3 多少个hash槽
    哈希槽计算

    一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。


     


    Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上

    2.3主3从redis集群扩缩容配置案例架构说明

    关闭防火墙+启动docker后台服务

    systemctl start docker

    新建6个docker容器redis实例

    1. docker run -d --name redis-node-1 --net host --privileged=true -v /data/redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381
    2. docker run -d --name redis-node-2 --net host --privileged=true -v /data/redis/share/redis-node-2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382
    3. docker run -d --name redis-node-3 --net host --privileged=true -v /data/redis/share/redis-node-3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383
    4. docker run -d --name redis-node-4 --net host --privileged=true -v /data/redis/share/redis-node-4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384
    5. docker run -d --name redis-node-5 --net host --privileged=true -v /data/redis/share/redis-node-5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385
    6. docker run -d --name redis-node-6 --net host --privileged=true -v /data/redis/share/redis-node-6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386

     如果运行成功,效果如下:

    命令分步解释

    进入容器redis-node-1并为6台机器构建集群关系 

    进入容器

    docker exec -it redis-node-1 /bin/bash

    构建主从关系

    //注意,进入docker容器后才能执行一下命令,且注意自己的真实IP地址

    redis-cli --cluster create 192.168.111.147:6381 192.168.111.147:6382 192.168.111.147:6383 192.168.111.147:6384 192.168.111.147:6385 192.168.111.147:6386 --cluster-replicas 1

    redis-cli --cluster create 192.168.111.147:6381 192.168.111.147:6382 192.168.111.147:6383 192.168.111.147:6384 192.168.111.147:6385 192.168.111.147:6386 --cluster-replicas 1

    --cluster-replicas 1 表示为每个master创建一个slave节点

    一切OK的话,3主3从搞定

    链接进入6381作为切入点,查看集群状态

    cluster info       cluster nodes

    3.主从容错切换迁移案例

    3.1大纲 :

    3.2 数据读写存储

    启动6机构成的集群并通过exec进入

    对6381新增两个key

    防止路由失效加参数-c并新增两个key

     查看集群信息

    redis-cli --cluster check 192.168.111.147:6381

    容错切换迁移

    主6381和从机切换,先停止主机6381

    6381宕机了,6385上位成为了新的master。
    备注:本次脑图笔记6381为主下面挂从6385。
    每次案例下面挂的从机以实际情况为准,具体是几号机器就是几号

    先还原之前的3主3从


     
    中间需要等待一会儿,docker集群重新响应。

    先启动6381  :docker start redis-node-1

    再停6385 :docker stop redis-node-5

     再启6385  :docker start redis-node-5

    主从机器分配情况以实际情况为准

    查看集群状态

    redis-cli --cluster check 自己IP:6381

    4.主从扩容案例

     4.1新建6387、6388两个节点+新建后启动+查看是否8节点

    docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-

    1. docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387
    2. docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388
    3. docker ps

    4.2  进入6387容器实例内部

    docker exec -it redis-node-7 /bin/bash

    4.3 将新增的6387节点(空槽号)作为master节点加入原集群

    将新增的6387作为master节点加入集群
    redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381
    6387 就是将要作为master新增节点
    6381 就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群

     

    4.4检查集群情况第1次

    redis-cli --cluster check 真实ip地址:6381

    4.5 重新分派槽号

    重新分派槽号
    命令:redis-cli --cluster reshard IP地址:端口号
    redis-cli --cluster reshard 192.168.111.147:6381

    4.6 检查集群情况第2次

    槽号分派说明

     为什么6387是3个新的区间,以前的还是连续?
    重新分配成本太高,所以前3家各自匀出来一部分,从6381/6382/6383三个旧节点分别匀出1364个坑位给新节点6387

    4.7 为主节点6387分配从节点6388

     命令:redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID
     
    redis-cli --cluster add-node 192.168.111.147:6388 192.168.111.147:6387 --cluster-slave --cluster-master-id e4781f644d4a4e4d4b4d107157b9ba8144631451-------这个是6387的编号,按照自己实际情况

    4.8检查集群情况第3次

    redis-cli --cluster check 192.168.111.147:6382

    5.主从缩容案例

    5.1检查集群情况1获得6388的节点ID

    redis-cli --cluster check 192.168.111.147:6382

    5.2将6388删除
    从集群中将4号从节点6388删除

    命令:redis-cli --cluster del-node ip:从机端口 从机6388节点ID
     
    redis-cli --cluster del-node 192.168.111.147:6388 5d149074b7e57b802287d1797a874ed7a1a284a8


    5.2将6387的槽号清空,重新分配,本例将清出来的槽号都给6381

    redis-cli --cluster reshard 192.168.111.147:6381

    5.3检查集群情况第二次

    redis-cli --cluster check 192.168.111.147:6381
     
    4096个槽位都指给6381,它变成了8192个槽位,相当于全部都给6381了,不然要输入3次,一锅端

     5.4将6387删除

    命令:redis-cli --cluster del-node ip:端口 6387节点ID
     
    redis-cli --cluster del-node 192.168.111.147:6387 e4781f644d4a4e4d4b4d107157b9ba8144631451

    5.5检查集群情况第三次

     
    redis-cli --cluster check 192.168.111.147:6381
     

  • 相关阅读:
    【HTML学生作业网页】基于HTML+CSS+JavaScript仿南京师范大学泰州学院(11页)
    react利用wangEditor写评论和@功能
    Linux 夺命连环11问你能答对几个?
    WordPress主题开发(五)之—— 主题结构基础补存
    解决kkFileView4.4.0版本pdf、word不能预览问题
    Redis-Cluster集群、Redis持久化、Redis作MySQL的缓存服务器、配置gearman实现Redis和MySQL数据同步
    自定义指令
    Windows to Go U盘系统制作(未测完成)
    [附源码]Python计算机毕业设计Django的高校资源共享平台
    深度解析大模型代码能力现状
  • 原文地址:https://blog.csdn.net/oDianZi1234567/article/details/132650566