• CF Round 479 (Div. 3)--E. Cyclic Components(DFS求无向图中独立环的个数)


    You are given an undirected graph consisting of n vertices and m edges. Your task is to find the number of connected components which are cycles.

    Here are some definitions of graph theory.

    An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex a is connected with a vertex b, a vertex b is also connected with a vertex a). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

    Two vertices u and v belong to the same connected component if and only if there is at least one path along edges connecting u and v.

    A connected component is a cycle if and only if its vertices can be reordered in such a way that:

    • the first vertex is connected with the second vertex by an edge,
    • the second vertex is connected with the third vertex by an edge,
    • ...
    • the last vertex is connected with the first vertex by an edge,
    • all the described edges of a cycle are distinct.

    A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

     

    There are 6 connected components, 2 of them are cycles: [7,10,16] and [5,11,9,15].

    Input

    The first line contains two integer numbers n and m (1≤n≤2⋅10^5, 0≤m≤2⋅10^5) — number of vertices and edges.

    The following m lines contains edges: edge i is given as a pair of vertices vi, ui (1≤vi,ui≤n, ui≠v). There is no multiple edges in the given graph, i.e. for each pair (vi,ui) there no other pairs (vi,ui) and (ui,vi) in the list of edges.

    Output

    Print one integer — the number of connected components which are also cycles.

    input

    1. 5 4
    2. 1 2
    3. 3 4
    4. 5 4
    5. 3 5

    output

    1
    

    题意:就是n个点,m条无向边,让你求出其中独立环的个数(环与环没有交集,且环没有其他无用边)。

    解析:我们可以发现,对于一个合法环,环上每个点一定都连出去两条边,我们可以对于每一个没搜过的点,进行DFS,中间判断是否合法,如果到最后搜回来这个点,那么说明是一个环,如此计数即可。

    1. #include
    2. using namespace std;
    3. const int N=2e5+5;
    4. vector<int> v[N];
    5. int cnt;
    6. bool st[N],ok;
    7. void dfs(int u,int fa)
    8. {
    9. if(ok) return;//已经找到了
    10. if(st[u])
    11. {
    12. cnt++;//环的个数+1
    13. ok=true;
    14. return;
    15. }
    16. st[u]=true;
    17. for(int i=0;isize();i++)
    18. {
    19. int j=v[u][i];//子节点
    20. if(j==fa||v[j].size()!=2) continue;//避免回搜
    21. dfs(j,u);
    22. }
    23. }
    24. void solve()
    25. {
    26. int n,m;
    27. scanf("%d%d",&n,&m);
    28. while(m--)
    29. {
    30. int a,b;
    31. scanf("%d%d",&a,&b);
    32. v[a].push_back(b);
    33. v[b].push_back(a);
    34. }
    35. for(int i=1;i<=n;i++)
    36. {
    37. if(st[i]||v[i].size()!=2) continue;//如果已经被访问过或者不可能是环,直接不用进行
    38. ok=false;
    39. dfs(i,i);
    40. }
    41. printf("%d\n",cnt);
    42. }
    43. int main()
    44. {
    45. int t=1;
    46. //scanf("%d",&t);
    47. while(t--) solve();
    48. return 0;
    49. }
  • 相关阅读:
    十四天算法快速入门第九天之「广度优先搜索 / 深度优先搜索」
    QT下输出.pro文件中的信息到输出窗口--概要信息
    css 超出滑动使用 CSS 实现超出滑动
    洛谷P5904 树形dp,长链剖分优化
    检查了600+个代码库,竟有3%代码未能通过单元测试
    Linux界的老古董
    学习 Rust 的第七天:如何理解引用
    Clickhouse数据库应用
    web前端学习笔记一
    Word处理控件Aspose.Words功能演示:使用C#对PDF文件进行进一步修改和转换
  • 原文地址:https://blog.csdn.net/qq_63739337/article/details/132721560