------------------后期会编辑些关于朴素贝叶斯算法的推导及代码分析-----------------
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
data = pd.read_csv('iris.data', header=None)
# print(data.head())
X = data.iloc[:, :-1]
Y = data.iloc[:, -1]
label = LabelEncoder()
Y = label.fit_transform(Y)
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=10)
gaussian = GaussianNB()
bernoull = BernoulliNB()
multin = MultinomialNB()
list_A = [gaussian, bernoull, multin]
one_test = []
train_score = []
for one in list_A:
one.fit(x_train, y_train)
one_test.append(one.score(x_test, y_test))
train_score.append(one.score(x_train, y_train))
# one.score(x_train, y_train)
# y_hat = one.predict(x_train)
#####各种错误
# y_hat = one.predict(y_train)
# one.score(x_train,y_hat)
# one.score(y_train,y_hat)
####正确
# accuracy_score(y_hat,y_train)
print(one_test)
print('=' * 50)
print(train_score)
E:\myprogram\anaconda\envs\python3.6\python.exe E:/xxxxxx/01_朴素贝叶斯鸢尾花数据分类.py
[1.0, 0.23333333333333334, 0.6]
==================================================
[0.95, 0.35833333333333334, 0.725]
Process finished with exit code 0