• JUC同步锁原理源码解析四----Semaphore


    JUC同步锁原理源码解析四----Semaphore

    Semaphore

    1.Semaphore的来源

    A counting semaphore.  Conceptually, a semaphore maintains a set of permits.  Each {@link #acquire} blocks if necessary until a permit isavailable, and then takes it.  Each {@link #release} adds a permit,potentially releasing a blocking acquirer.
    

    ​ 一组数量的信号,只有获取到信号的线程才允许执行。通过acquire进行获取,如果获取不到则需要阻塞等待直到一个信号可用。release会释放一个信号量。通过这种方式可以实现限流。

    2.Semaphore的底层实现

    ​ Semaphore的底层实现依旧依赖于AQS的共享锁机制。

    2.AQS源码

    Node节点

     static final class Node {
            /** Marker to indicate a node is waiting in shared mode */
            static final Node SHARED = new Node();
            /** Marker to indicate a node is waiting in exclusive mode */
            static final Node EXCLUSIVE = null;
    
            /** waitStatus value to indicate thread has cancelled */
            static final int CANCELLED =  1;
            /** waitStatus value to indicate successor's thread needs unparking */
            static final int SIGNAL    = -1;
            /** waitStatus value to indicate thread is waiting on condition */
            static final int CONDITION = -2;
     
            static final int PROPAGATE = -3;
    
            volatile int waitStatus;
    
            volatile Node prev;
    
            volatile Node next;
           
            volatile Thread thread;
    
            Node nextWaiter;
    }
    

    AbstractQueuedSynchronizer类

    public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable {
        
     	private transient volatile Node head;
    
        /**
         * Tail of the wait queue, lazily initialized.  Modified only via
         * method enq to add new wait node.
         */
        private transient volatile Node tail;
    
        /**
         * The synchronization state.
         */
        private volatile int state;//最重要的一个变量
           
    }
    

    ConditionObject类

    public class ConditionObject implements Condition, java.io.Serializable {
            private static final long serialVersionUID = 1173984872572414699L;
            /** First node of condition queue. */
            private transient Node firstWaiter;
            /** Last node of condition queue. */
            private transient Node lastWaiter;
    }
    

    accquire方法

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&//尝试获取锁
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//如果获取锁失败,添加到队列中,由于ReentrantLock是独占锁所以节点必须是EXCLUSIVE类型
            selfInterrupt();//添加中断标识位
    }
    

    addWaiter方法

    private Node addWaiter(Node mode) {
         Node node = new Node(Thread.currentThread(), mode);//新建节点
         // Try the fast path of enq; backup to full enq on failure
         Node pred = tail;//获取到尾指针
         if (pred != null) {//尾指针不等于空,将当前节点替换为尾指针
             node.prev = pred;
             if (compareAndSetTail(pred, node)) {//采用尾插法,充分利用时间局部性和空间局部性。尾插的节点一般不容易被取消。
                 pred.next = node;
                 return node;
             }
         }
         enq(node);//cas失败后执行入队操作,继续尝试
         return node;
     }
    
    

    enq方法

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;//获取尾指针
            if (t == null) { //代表当前队列没有节点
                if (compareAndSetHead(new Node()))//将当前节点置为头结点
                    tail = head;
            } else {//当前队列有节点
                node.prev = t;//
                if (compareAndSetTail(t, node)) {//将当前节点置为尾结点
                    t.next = node;
                    return t;
                }
            }
        }
    }
    

    acquireQueued方法

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();//找到当前节点的前驱节点
                if (p == head && tryAcquire(arg)) {//前驱节点等于头节点尝试cas抢锁。
                    setHead(node);//抢锁成功将当前节点设置为头节点
                    p.next = null; // help GC  当头结点置空
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&//当队列中有节点在等待,判断是否应该阻塞
                    parkAndCheckInterrupt())//阻塞等待,检查中断标识位
                    interrupted = true;//将中断标识位置为true
            }
        } finally {
            if (failed)//
                cancelAcquire(node);//取消当前节点
        }
    }
    
    
     private void cancelAcquire(Node node) {
         // Ignore if node doesn't exist
         if (node == null)//当前节点为空直接返回
             return;
    
         node.thread = null;//要取消了将当前节点的线程置为空
         // Skip cancelled predecessors
         Node pred = node.prev;//获取到当前节点的前驱节点
         while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
             node.prev = pred = pred.prev;
         Node predNext = pred.next;//将当前要取消的节点断链
    
         node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
         // If we are the tail, remove ourselves.
         if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
             compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
         } else {
             // If successor needs signal, try to set pred's next-link
             // so it will get one. Otherwise wake it up to propagate.
             int ws;
             if (pred != head &&//前驱节点不等于头结点
                 ((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
                  (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
                 pred.thread != null) {//前驱节点的线程补位空
                 Node next = node.next;//获取当前节点的next指针
                 if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
                     compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
             } else {
                 unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
             }
    
             node.next = node; // help GC 将引用指向自身
         }
     }
    
     private void unparkSuccessor(Node node) {
         /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
         int ws = node.waitStatus;//获取当前节点状态
         if (ws < 0)//如果节点为负数也即不是取消节点
             compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
    
         /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
         Node s = node.next;//获取到下一个节点
         if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
             s = null;//将s置为空
             for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
                 if (t.waitStatus <= 0)
                     s = t;
         }
         if (s != null)//如果s不等于空
             LockSupport.unpark(s.thread);//唤醒当前节点s
     }
    

    shouldParkAfterFailedAcquire方法

    
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//获取上一个节点的等待状态
        if (ws == Node.SIGNAL)//如果状态为SIGNAL,代表后续节点有节点可以唤醒,可以安心阻塞去
            /*
                 * This node has already set status asking a release
                 * to signal it, so it can safely park.
                 */
            return true;
        if (ws > 0) {//如果当前状态大于0,代表节点为CANCELLED状态
            /*
                 * Predecessor was cancelled. Skip over predecessors and
                 * indicate retry.
                 */
            do {
                node.prev = pred = pred.prev;//从尾节点开始遍历,找到下一个状态不是CANCELLED的节点。将取消节点断链移除
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
                 * waitStatus must be 0 or PROPAGATE.  Indicate that we
                 * need a signal, but don't park yet.  Caller will need to
                 * retry to make sure it cannot acquire before parking.
                 */
            //这里需要注意ws>0时,已经找到了一个不是取消状态的前驱节点。
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将找到的不是CANCELLED节点的前驱节点,将其等待状态置为SIGNAL
        }
        return false;
    }
    

    cancelAcquire方法

     private void cancelAcquire(Node node) {
         // Ignore if node doesn't exist
         if (node == null)//当前节点为空直接返回
             return;
    
         node.thread = null;//要取消了将当前节点的线程置为空
         // Skip cancelled predecessors
         Node pred = node.prev;//获取到当前节点的前驱节点
         while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
             node.prev = pred = pred.prev;
         Node predNext = pred.next;//将当前要取消的节点断链
    
         node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
         // If we are the tail, remove ourselves.
         if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
             compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
         } else {
             // If successor needs signal, try to set pred's next-link
             // so it will get one. Otherwise wake it up to propagate.
             int ws;
             if (pred != head &&//前驱节点不等于头结点
                 ((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
                  (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
                 pred.thread != null) {//前驱节点的线程补位空
                 Node next = node.next;//获取当前节点的next指针
                 if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
                     compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
             } else {
                 unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
             }
    
             node.next = node; // help GC 将引用指向自身
         }
     }
    

    unparkSuccessor方法

     private void unparkSuccessor(Node node) {
         /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
         int ws = node.waitStatus;//获取当前节点状态
         if (ws < 0)//如果节点为负数也即不是取消节点
             compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
    
         /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
         Node s = node.next;//获取到下一个节点
         if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
             s = null;//将s置为空
             for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
                 if (t.waitStatus <= 0)
                     s = t;
         }
         if (s != null)//如果s不等于空
             LockSupport.unpark(s.thread);//唤醒当前节点s
     }
    

    release方法

    public final boolean release(int arg) {
        if (tryRelease(arg)) {//子类实现如何释放锁
            Node h = head;//获取到头结点
            if (h != null && h.waitStatus != 0)//获取到头结点,如果头结点不为空,等待状态不为0,唤醒后续节点
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    private void unparkSuccessor(Node node) {
        /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
        int ws = node.waitStatus;//获取节点的等待状态
        if (ws < 0)//如果等待状态小于0,标识节点属于有效节点
            compareAndSetWaitStatus(node, ws, 0);//将当前节点的等待状态置为0
    
        /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
        Node s = node.next;//获取到下一个节点
        if (s == null || s.waitStatus > 0) {//如果节点是空,或者是取消状态的节点,就找到一个非取消状态的节点,将取消状态的节点断链后由垃圾回收器进行回收
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)//节点不用空
            LockSupport.unpark(s.thread);//唤醒当前等待的有效节点S
    }
    

    acquireShared方法

    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)//由子类实现
            doAcquireShared(arg);
    }
    
    

    doAcquireShared方法

    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);//将共享节点也即读线程入队并返回
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();//找到节点的前驱节点
                if (p == head) {//如果前驱节点等于头结点
                    int r = tryAcquireShared(arg);//尝试获取共享锁数量
                    if (r >= 0) {//如果锁的数量大于0,表示还有多余的共享锁。这里等于0也需要进一步判断。由于如果当执行到这里时,有另外的线程释放了共享锁,如果不进行判断,将会导致释放锁的线程没办法唤醒其他线程。所以这里会伪唤醒一个节点,唤醒的节点后续如果没有锁释放,依旧阻塞在当前parkAndCheckInterrupt方法中
                        setHeadAndPropagate(node, r);//将当前节点的等待状态设置为Propagate。
                        p.next = null; // help GC
                        if (interrupted)//判断是会否中断过
                            selfInterrupt();//设置中断标识位
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&//判断是否应该阻塞等待
                    parkAndCheckInterrupt方法中())//阻塞并检查中断标识
                    interrupted = true;//重置中断标识位
            }
        } finally {
            if (failed)//如果失败
                cancelAcquire(node);//取消节点
        }
    }
    

    setHeadAndPropagate方法

    private void setHeadAndPropagate(Node node, int propagate) {
            Node h = head; // Record old head for check below
            setHead(node);//将当前节点置为头结点
            /*
             * Try to signal next queued node if:
             *   Propagation was indicated by caller,
             *     or was recorded (as h.waitStatus either before
             *     or after setHead) by a previous operation
             *     (note: this uses sign-check of waitStatus because
             *      PROPAGATE status may transition to SIGNAL.)
             * and
             *   The next node is waiting in shared mode,
             *     or we don't know, because it appears null
             *
             * The conservatism in both of these checks may cause
             * unnecessary wake-ups, but only when there are multiple
             * racing acquires/releases, so most need signals now or soon
             * anyway.
             */
            if (propagate > 0 //可获取的共享锁也即读锁的数量,对于ReentrantReadWriteLock而言,永远都是1,所以会继续唤醒下一个读线程
                || h == null //如果旧的头结点为空
                || h.waitStatus < 0 ||//头结点的等待状态不为0
                (h = head) == null || h.waitStatus < 0) {//旧头节点不为空并且等待状态小于0也即是有效节点
                Node s = node.next;//获取到node的下一个节点
                if (s == null || s.isShared())//如果node的下一个节点为空或者是共享节点
                    doReleaseShared();//唤醒下一个线程
            }
        }
    

    releaseShared方法

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {//子类实现释放锁
            doReleaseShared();//唤醒后续线程
            return true;//释放成功
        }
        return false;//释放是吧
    }
    

    doReleaseShared方法

    private void doReleaseShared() {
        /*
             * Ensure that a release propagates, even if there are other
             * in-progress acquires/releases.  This proceeds in the usual
             * way of trying to unparkSuccessor of head if it needs
             * signal. But if it does not, status is set to PROPAGATE to
             * ensure that upon release, propagation continues.
             * Additionally, we must loop in case a new node is added
             * while we are doing this. Also, unlike other uses of
             * unparkSuccessor, we need to know if CAS to reset status
             * fails, if so rechecking.
             */
        for (;;) {
            Node h = head;//获取到当前头结点
            if (h != null && h != tail) {//如果头结点不为空并且不等于尾结点
                int ws = h.waitStatus;//获取当前节点的等待状态
                if (ws == Node.SIGNAL) {//如果状态为SIGNAL
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//cas将SIGNAL状态置为0。SIGNAL标识后续有线程需要唤醒
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);//唤醒后续线程
                }
                else if (ws == 0 &&//如果当前状态为0。表示有线程将其置为0
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))//cas将0状态置为PROPAGATE。在多个共享锁同时释放时,方便继续进行读传播,唤醒后续节点
                    continue;                // loop on failed CAS
            }
            if (h == head)//如果头结点没有改变,证明没有必要继续循环等待了,直接退出吧,如果头结点放生变化,可能有其他线程释放了锁。
                break;
        }
    }
    

    await()

    public final void await() throws InterruptedException {
        if (Thread.interrupted())//线程是否发生中断,是,就抛出中断异常
            throw new InterruptedException();
        Node node = addConditionWaiter();//加入条件等待队列
        int savedState = fullyRelease(node);//释放锁,并返回。因为当前线程需要等待
        int interruptMode = 0;
        while (!isOnSyncQueue(node)) {//判断是否在竞争队列中。AQS分为两个队列一个是竞争队列,等待调度执行,一个是等待队列等待在ConditionObject上。
            LockSupport.park(this);//阻塞等待
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)//重新去获取锁并判断当前中断模式不是THROW_IE
            interruptMode = REINTERRUPT;//将中断模式置为REINTERRUPT
        if (node.nextWaiter != null) // clean up if cancelled如果当前节点的下一个节点不为空
            unlinkCancelledWaiters();//清除等待队列中已经取消的节点
        if (interruptMode != 0)//如果当前中断模式不等于0
            reportInterruptAfterWait(interruptMode);
    }
    
    private void reportInterruptAfterWait(int interruptMode)
        throws InterruptedException {
        if (interruptMode == THROW_IE)//如果是THROW_IE直接抛出异常
            throw new InterruptedException();
        else if (interruptMode == REINTERRUPT)//如果是REINTERRUPT
            selfInterrupt();//重置中断标识位
    }
    

    addConditionWaiter方法

    private Node addConditionWaiter() {
        Node t = lastWaiter;//获取到最后一个节点
        // If lastWaiter is cancelled, clean out.
        if (t != null && t.waitStatus != Node.CONDITION) {//最后一个节点不等于空,并且等待状态不等于CONDITION
            unlinkCancelledWaiters();//将取消节点断链,标准的链表操作
            t = lastWaiter;//获取到最后一个有效的节点
        }
        Node node = new Node(Thread.currentThread(), Node.CONDITION);//将当前节点封装成node
        if (t == null)//如果最后一个节点为空,表示当前节点是第一个入队的节点
            firstWaiter = node;
        else
            t.nextWaiter = node;//否则将当前node挂在链表末尾
        lastWaiter = node;//设置最后节点的指针指向当前node
        return node;
    }
    

    fullyRelease方法

    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();//获取当前state状态
            if (release(savedState)) {//释放锁尝试
                failed = false;
                return savedState;//返回
            } else {
                throw new IllegalMonitorStateException();//抛出释放锁异常
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;//如果失败将节点置为取消状态
        }
    }
    
    public final boolean release(int arg) {
        if (tryRelease(arg)) {//尝试释放锁,在CyclciBarrier中由于线程需要去阻塞,所以需要将锁释放,后续重新拿锁
            Node h = head;
            if (h != null && h.waitStatus != 0)//从头结点开始唤醒
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    

    isOnSyncQueue方法

    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)//如果当前节点是Condition或者node.pre节点为空,标识不在竞争队列中,返回faslse
            return false;
        if (node.next != null) // If has successor, it must be on queue  表示在竞争队列中
            return true;
        /*
             * node.prev can be non-null, but not yet on queue because
             * the CAS to place it on queue can fail. So we have to
             * traverse from tail to make sure it actually made it.  It
             * will always be near the tail in calls to this method, and
             * unless the CAS failed (which is unlikely), it will be
             * there, so we hardly ever traverse much.
             */
        return findNodeFromTail(node);//从竞争队列的尾结点开始找当前node,找到就返回true,否则为false
    }
    
    private boolean findNodeFromTail(Node node) {
        Node t = tail;//获取到尾结点
        for (;;) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }
    

    findNodeFromTail方法

    private int checkInterruptWhileWaiting(Node node) {
        return Thread.interrupted() ?//判断当前是否中断过
            (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) ://如果移动到竞争队列中并入队成功,返回THROW_IE,否则返回REINTERRUPT
        0;//没有中断过直接返回0
    }
    
    //走到这里表示条件队列的条件满足,可以将节点移动到竞争队列中执行
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {//尝试将当前为Condition的节点置为0,并移动到竞争队列中
            enq(node);
            return true;
        }
        /*
             * If we lost out to a signal(), then we can't proceed
             * until it finishes its enq().  Cancelling during an
             * incomplete transfer is both rare and transient, so just
             * spin.
             */
        while (!isOnSyncQueue(node))//如果不在竞争队列中返回false
            Thread.yield();
        return false;
    }
    

    signalAll方法

    public final void signalAll() {
        if (!isHeldExclusively())//是不是持有独占锁
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;//获取等待队列的第一个节点
        if (first != null)//如果节点不为空
            doSignalAll(first);//唤醒所有线程
    }
    
    //从头指针一直遍历等待队列,将其移动到竞争队列中
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);//
            first = next;
        } while (first != null);
    }
    

    transferForSignal方法

    final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))//cas自旋将其等待状态改为0
            return false;
    
        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
        Node p = enq(node);//将其放入竞争队列
        int ws = p.waitStatus;//获取节点的等待状态
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))//如果节点是取消状态或者cas将其置为signal失败,唤醒当前线程,让他自己处理,后续在竞争队列中会自动移除取消节点
            LockSupport.unpark(node.thread);
        return true;
    }
    

    总结:AQS提供了统一的模板,对于如何入队出队以及线程的唤醒都由AQS提供默认的实现,只需要子类实现自己上锁和解锁的逻辑。

    3.Semaphore

    基本使用

    import java.util.concurrent.Semaphore;
    
    public class SemaphoreDemo {
        public static void main(String[] args) {
            //Semaphore s = new Semaphore(2);
            Semaphore s = new Semaphore(2, true);
            //允许一个线程同时执行
            //Semaphore s = new Semaphore(1);
            new Thread(() -> {
                try {
                    s.acquire();
                    System.out.println("T1 running...");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    s.release();
                }
            }).start();
    
            new Thread(() -> {
                try {
                    s.acquire();
                    System.out.println("T2 running...");
                    s.release();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    s.release();
                }
            }).start();
        }
    }
    

    Sync类

    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;
    
        Sync(int permits) {
            setState(permits);//设置信号量
        }
    
        final int getPermits() {
            return getState();//获得信号量
        }
    
        final int nonfairTryAcquireShared(int acquires) {//非公平锁的抢锁方式
            for (;;) {
                int available = getState();//获取state中的可用信号量
                int remaining = available - acquires;//减1
                if (remaining < 0 ||//信号量小于0,直接返回
                    compareAndSetState(available, remaining))//尝试cas抢锁
                    return remaining;//返回剩余的信号量
            }
        }
    
        protected final boolean tryReleaseShared(int releases) {
            for (;;) {
                int current = getState();//获取当前state
                int next = current + releases;//将state+1.也即信号量加1
                if (next < current) // overflow 非法条件判断,超过最大数量
                    throw new Error("Maximum permit count exceeded");
                if (compareAndSetState(current, next))//cas尝试释放锁
                    return true;//释放成功返回
            }
        }
    	
        //减少信号量
        final void reducePermits(int reductions) {
            for (;;) {
                int current = getState();//获取当前state
                int next = current - reductions;
                if (next > current) // underflow
                    throw new Error("Permit count underflow");
                if (compareAndSetState(current, next))//cas尝试减少信号量
                    return;
            }
        }
    	
        //清空信号数量
        final int drainPermits() {
            for (;;) {
                int current = getState();//获取当前state状态
                if (current == 0 || compareAndSetState(current, 0))//当前信号为0 或者将state置为0也即将信号数量置为0
                    return current;
            }
        }
    }
    

    FairSync与NonfairSync的类实现

    //公平锁
    static final class FairSync extends Sync {
        private static final long serialVersionUID = 2014338818796000944L;
    
        FairSync(int permits) {
            super(permits);
        }
    
        protected int tryAcquireShared(int acquires) {
            for (;;) {
                if (hasQueuedPredecessors())//队列中是否有线程在排队
                    return -1;//获取失败
                int available = getState();//可用的信号量
                int remaining = available - acquires;//减去当前获取的数量
                if (remaining < 0 ||//可用的信号量小于0
                    compareAndSetState(available, remaining))//cas设置state变量.
                    return remaining;//返回可用的信号量
            }
        }
    }
    
    //非公平锁
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -2694183684443567898L;
    
        NonfairSync(int permits) {
            super(permits);
        }
    
        protected int tryAcquireShared(int acquires) {
            return nonfairTryAcquireShared(acquires);//详情请看父类的实现
        }
    }
    

    acquire方法

    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);//请查看父类实现,与acquireShared一致,不过加了一场处理
    }
    

    release方法:

    public void release() {
        sync.releaseShared(1);
    }
    
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {//Semaphore的类实现锁获取的方法。
            doReleaseShared();//与AQS中一致,不过多赘述
            return true;
        }
        return false;
    }
    

    4.留言

    ​ 到了这里,其实AQS的源码基本已经覆盖了,对于AQS的源码也应该有了清楚的认知。总结就是:一个volatile 的state变量,两个等待队列(竞争队列,条件队列),通过cas的方式保证单变量的原子性。后续将会对Exchanger以及Phaser进行源码解析,到此基本AQS已经到了一个段落了。后续观看源码时,请注意多考虑一下多线程并发时可能出现的情况,去理解doug lea写代码的思路。

  • 相关阅读:
    Spring IOC之资源加载器
    Request_共享数据(域对象) [JavaWeb][Servlet]
    Python+大数据-Spark技术栈(二)SparkBase&Core
    031-从零搭建微服务-监控中心(一)
    C#:实现52张扑克牌的洗牌算法(附完整源码)
    [吴恩达机器学习课程笔记] week four强化学习
    关于我是如何得到凯程书签的-研途微光之写给徐影:致谢拉比
    飞桨 - 模型开发
    Active Directory 和域名系统(DNS)的相互关系
    关于smartforms 文本乱码问题
  • 原文地址:https://www.cnblogs.com/selfsalvation/p/17488560.html