面试题:
@PostConstruct初始化白名单数据
详情地址可查看代码:Redis BitMap/HyperLogLog/GEO/布隆过滤器案例_Please Sit Down的博客-CSDN博客
1、redis中key设置为永不过期 or 过期时间错开
2、redis缓存集群实现高可用
a、主从+哨兵
b、使用Redis集群
c、开启redis持久化机制aof/rdb,尽快恢复缓存集群
3、多缓存结合预防雪崩
ehcache本地缓存 + redis缓存
4、服务降级
Hystrix或者阿里sentinel限流&降级
请求去查询一条记录,先查redis无,后查mysq无,都查询不到该条记录,但是清求每次都会打到数据库上面去,导致后台数据库压力暴增。这种现象我们称为缓存穿适,这个redis变成了一个摆设。
简单说就是:本来无物,两库都没有。既不在Redis缓存库,也不在mysql,数据车存在被多次暴击风险。
主要是防止恶意攻击,解决方法:空对象缓存、bloomfilteri过滤器

空对象缓存或者缺省值。
第一种解决方案,回写增强。如果发生了缓存穿透,我们可以针对要查询的数据,在Redis里存一个和业务部门商量后确定的缺省值(比如,零、负数、defaultNull等)。
比如,键uid:abcdxxx,值defaultNull作为案例的key和value。先去redis查键uid:abcdxxx没有,再去mysql查没有获得 ,这就发生了一次穿透现象。but,可以增强回写机制。mysql也查不到的话也让redis存入刚刚查不到的key并保护mysql。第一次来查询uid:abcdxxx,redis和mysql都没有,返回null给调用者,但是增强回写后第二次来查uid:abcdxxx,此时redis就有值了。可以直接从Redis中读取default缺省值返回给业务应用程序,避免了把大量请求发送给mysql处理,打爆mysql。但是,此方法架不住黑客的恶意攻击,有缺陷......,只能解决key相同的情况。
黑客或者恶意攻击:黑客会对你的系统进行攻击,拿一个不存在的id去查询数据,会产生大量的情求到数据库去查询。可能会导数你的数据库由于压力过大而宕掉。
1、key相同打你系统:第一次打到mysql,空对象缓存后第二次就返回defaultNull缺省值,避免mysql被攻击,不用再到数据车中去走一圈了。
2、key不同打你系统:由于存在空对象缓存和缓存回写(看自己业务不限死),redis中的无关紧要的key也会越写越多(记得设置redisi过期时间)
使用Google布隆过器Guava解决缓存穿透。
Guava中布隆过滤器的实现算是比较权威的,所以实际项目中我们可以直接使用Guava布隆过滤器。
Guava's BloomFilter源码出处:https://github.com/google/guava/blob/master/guava/src/com/google/common/hash/BloomFilter.java
白名单过滤器案例:

说明:会出现误判问题,但是概率小可以接受,不能从布隆过滤器删除;全部合法的key都需要放入Guava版布隆过滤器+redis里面,不然数据就是返回null。
代码实现:
pom.xml
- <dependency>
- <groupId>com.google.guavagroupId>
- <artifactId>guavaartifactId>
- <version>23.0version>
- dependency>
yml
- server.port=7777
- spring.application.name=redis7
-
- # ========================redis单机=====================
- spring.redis.database=0
- # 修改为自己真实IP
- spring.redis.host=192.168.111.185
- spring.redis.port=6379
- spring.redis.password=111111
- spring.redis.lettuce.pool.max-active=8
- spring.redis.lettuce.pool.max-wait=-1ms
- spring.redis.lettuce.pool.max-idle=8
- spring.redis.lettuce.pool.min-idle=0
测试1:
- @Test
- public void testGuavaWithBloomFilter(){
- // 创建布隆过滤器对象
- BloomFilter
filter = BloomFilter.create(Funnels.integerFunnel(), 100); - // 判断指定元素是否存在
- System.out.println(filter.mightContain(1));
- System.out.println(filter.mightContain(2));
- // 将元素添加进布隆过滤器
- filter.put(1);
- filter.put(2);
- System.out.println(filter.mightContain(1));
- System.out.println(filter.mightContain(2));
- }
-
- // 结果
- // false false
-
- // true true
测试2:取样本100W数据,查查不在100W范围内,其它10W数据是否存在
controller
- import com.atguigu.redis7.service.GuavaBloomFilterService;
- import io.swagger.annotations.Api;
- import io.swagger.annotations.ApiOperation;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.web.bind.annotation.PathVariable;
- import org.springframework.web.bind.annotation.RequestMapping;
- import org.springframework.web.bind.annotation.RequestMethod;
- import org.springframework.web.bind.annotation.RestController;
-
- import javax.annotation.Resource;
-
- @Api(tags = "google工具Guava处理布隆过滤器")
- @RestController
- @Slf4j
- public class GuavaBloomFilterController{
- @Resource
- private GuavaBloomFilterService guavaBloomFilterService;
-
- @ApiOperation("guava布隆过滤器插入100万样本数据并额外10W测试是否存在")
- @RequestMapping(value = "/guavafilter",method = RequestMethod.GET)
- public void guavaBloomFilter() {
- guavaBloomFilterService.guavaBloomFilter();
- }
- }
service
- import com.google.common.hash.BloomFilter;
- import com.google.common.hash.Funnels;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.stereotype.Service;
-
- import java.util.ArrayList;
- import java.util.List;
-
- @Service
- @Slf4j
- public class GuavaBloomFilterService{
- public static final int _1W = 10000;
- //布隆过滤器里预计要插入多少数据
- public static int size = 100 * _1W;
- //误判率,它越小误判的个数也就越少(思考,是不是可以设置的无限小,没有误判岂不更好)
- //fpp the desired false positive probability
- public static double fpp = 0.03;
- // 构建布隆过滤器
- private static BloomFilter
bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size,fpp); - public void guavaBloomFilter(){
- //1 先往布隆过滤器里面插入100万的样本数据
- for (int i = 1; i <=size; i++) {
- bloomFilter.put(i);
- }
- //故意取10万个不在过滤器里的值,看看有多少个会被认为在过滤器里
- List
list = new ArrayList<>(10 * _1W); - for (int i = size+1; i <= size + (10 *_1W); i++) {
- if (bloomFilter.mightContain(i)) {
- log.info("被误判了:{}",i);
- list.add(i);
- }
- }
- log.info("误判的总数量::{}",list.size());
- }
- }
结果:
现在总共有10万数据是不存在的,误判了3033次,原始样本:100W
不存在数据:1000000W---1100000W
误判率:3033 / 100000 = 0.03033
深刻分析代码:核心BloomFilter.create方法
- @VisibleForTesting
- static
BloomFilter create( - Funnel super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
- 。。。。
- }
这里有四个参数:
funnel:数据类型(通常是调用Funnels工具类中的)
expectedInsertions:指望插入的值的个数
fpp:误判率(默认值为0.03)
strategy:哈希算法
问题:为什么fpp设置成0.03?
情景一:fpp = 0.01


情景二:fpp = 0.03(默认参数)


情景三:fpp=0.000000000000001

情景总结:
上面的numBits,表示存一百万个int类型数字,须要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,须要481000000=3200万位。若是使用HashMap去存,按HashMap50%的存储效率,须要6400万位。能够看出BloomFilter的存储空间很小,只有HashMap的1/10左右。
上面的numHashFunctions表示须要几个hash函数运算,去映射不一样的下标存这些数字是否存在(0 or 1)。
布隆过滤器说明:

黑名单过滤器案例:

大量的请求同时查询一个key时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。简单说就是热点key突然失效了,暴打mysql
备注:穿透和击穿,截然不同。
会造成某一时刻数据库请求量过大,压力剧增。
一般技术部门需要知道热点key是那些个?做到心里有数防止击穿
互斥更新、随机退避、差异失效时间
热点key失效问题:时间到了自然清除但还波访问到;delete掉的key,刚I巧又被访问
方案1:差异失效时间,对于访问须繁的热点key,干脆就不设置过期时间
方案2:互斥跟新,采用双检加锁策略
多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。
天猫聚划算功能实现+防止缓存击穿(热点key突然失效导致了缓存击穿)
定时任务每次取20条记录,取的过程中,突然失效,大量数据打到mysql

redis数据类型选型:list

entity
- import io.swagger.annotations.ApiModel;
- import lombok.AllArgsConstructor;
- import lombok.Data;
- import lombok.NoArgsConstructor;
-
- @Data
- @AllArgsConstructor
- @NoArgsConstructor
- @ApiModel(value = "聚划算活动producet信息")
- public class Product {
- //产品ID
- private Long id;
- //产品名称
- private String name;
- //产品价格
- private Integer price;
- //产品详情
- private String detail;
- }
service:采用定时器将参与聚划算活动的特价商品新增进入redis中
- import cn.hutool.core.date.DateUtil;
- import com.atguigu.redis7.entities.Product;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.data.redis.core.RedisTemplate;
- import org.springframework.stereotype.Service;
-
- import javax.annotation.PostConstruct;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Random;
- import java.util.concurrent.TimeUnit;
-
- @Service
- @Slf4j
- public class JHSTaskService {
- public static final String JHS_KEY="jhs";
- public static final String JHS_KEY_A="jhs:a";
- public static final String JHS_KEY_B="jhs:b";
-
- @Autowired
- private RedisTemplate redisTemplate;
-
- /**
- * 偷个懒不加mybatis了,模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
- * @return
- */
- private List
getProductsFromMysql() { - List
list=new ArrayList<>(); - for (int i = 1; i <=20; i++) {
- Random rand = new Random();
- int id= rand.nextInt(10000);
- Product obj=new Product((long) id,"product"+i,i,"detail");
- list.add(obj);
- }
- return list;
- }
-
- @PostConstruct
- public void initJHS(){
- log.info("启动定时器淘宝聚划算功能模拟.........."+ DateUtil.now());
- new Thread(() -> {
- //模拟定时器一个后台任务,定时把数据库的特价商品,刷新到redis中
- while (true){
- //模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
- List
list=this.getProductsFromMysql(); - //采用redis list数据结构的lpush来实现存储
- this.redisTemplate.delete(JHS_KEY);
- //lpush命令
- this.redisTemplate.opsForList().leftPushAll(JHS_KEY,list);
- //间隔一分钟 执行一遍,模拟聚划算每3天刷新一批次参加活动
- try { TimeUnit.MINUTES.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
-
- log.info("runJhs定时刷新..............");
- }
- },"t1").start();
- }
- }
controller
- import com.atguigu.redis7.entities.Product;
- import io.swagger.annotations.Api;
- import io.swagger.annotations.ApiOperation;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.data.redis.core.RedisTemplate;
- import org.springframework.util.CollectionUtils;
- import org.springframework.web.bind.annotation.RequestMapping;
- import org.springframework.web.bind.annotation.RequestMethod;
- import org.springframework.web.bind.annotation.RestController;
- import java.util.List;
-
- @RestController
- @Slf4j
- @Api(tags = "聚划算商品列表接口")
- public class JHSProductController {
- public static final String JHS_KEY="jhs";
-
- @Autowired
- private RedisTemplate redisTemplate;
-
- /**
- * 分页查询:在高并发的情况下,只能走redis查询,走db的话必定会把db打垮
- * @param page
- * @param size
- * @return
- */
- @RequestMapping(value = "/pruduct/find",method = RequestMethod.GET)
- @ApiOperation("按照分页和每页显示容量,点击查看")
- public List
find(int page, int size) { - List
list=null; -
- long start = (page - 1) * size;
- long end = start + size - 1;
-
- try {
- //采用redis list数据结构的lrange命令实现分页查询
- list = this.redisTemplate.opsForList().range(JHS_KEY, start, end);
- if (CollectionUtils.isEmpty(list)) {
- //TODO 走DB查询
- }
- log.info("查询结果:{}", list);
- } catch (Exception ex) {
- //这里的异常,一般是redis瘫痪 ,或 redis网络timeout
- log.error("exception:", ex);
- //TODO 走DB查询
- }
-
- return list;
- }
- }
至此步骤,上述聚划算的功能算是完成,请思考在高并发下有什么经典生产问题?
答案:热点k突然失效导致可怕的缓存击穿,delete命令执行的一瞬间有空隙,其它请求线程继续找Redis为null,打到了mysql,暴击…

最终目的:2条命令原子性还是其次,主要是防止热key突然失效暴击mysq打爆系统
采用差异失效时间

sevice
- import cn.hutool.core.date.DateUtil;
- import com.atguigu.redis7.entities.Product;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.data.redis.core.RedisTemplate;
- import org.springframework.stereotype.Service;
- import javax.annotation.PostConstruct;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Random;
- import java.util.concurrent.TimeUnit;
-
- @Service
- @Slf4j
- public class JHSTaskService {
- public static final String JHS_KEY_A="jhs:a";
- public static final String JHS_KEY_B="jhs:b";
-
- @Autowired
- private RedisTemplate redisTemplate;
-
- /**
- * 偷个懒不加mybatis了,模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
- * @return
- */
- private List
getProductsFromMysql() { - List
list=new ArrayList<>(); - for (int i = 1; i <=20; i++) {
- Random rand = new Random();
- int id= rand.nextInt(10000);
- Product obj=new Product((long) id,"product"+i,i,"detail");
- list.add(obj);
- }
- return list;
- }
-
- @PostConstruct
- public void initJHSAB(){
- log.info("启动AB定时器计划任务淘宝聚划算功能模拟.........."+DateUtil.now());
- new Thread(() -> {
- //模拟定时器,定时把数据库的特价商品,刷新到redis中
- while (true){
- //模拟从数据库读取100件特价商品,用于加载到聚划算的页面中
- List
list=this.getProductsFromMysql(); - //先更新B缓存
- this.redisTemplate.delete(JHS_KEY_B);
- this.redisTemplate.opsForList().leftPushAll(JHS_KEY_B,list);
- this.redisTemplate.expire(JHS_KEY_B,20L,TimeUnit.DAYS);
- //再更新A缓存
- this.redisTemplate.delete(JHS_KEY_A);
- this.redisTemplate.opsForList().leftPushAll(JHS_KEY_A,list);
- this.redisTemplate.expire(JHS_KEY_A,15L,TimeUnit.DAYS);
- //间隔一分钟 执行一遍
- try { TimeUnit.MINUTES.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
-
- log.info("runJhs定时刷新双缓存AB两层..............");
- }
- },"t1").start();
- }
- }
controller
- import com.atguigu.redis7.entities.Product;
- import io.swagger.annotations.Api;
- import io.swagger.annotations.ApiOperation;
- import lombok.extern.slf4j.Slf4j;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.data.redis.core.RedisTemplate;
- import org.springframework.util.CollectionUtils;
- import org.springframework.web.bind.annotation.RequestMapping;
- import org.springframework.web.bind.annotation.RequestMethod;
- import org.springframework.web.bind.annotation.RestController;
- import java.util.List;
-
- @RestController
- @Slf4j
- @Api(tags = "聚划算商品列表接口")
- public class JHSProductController {
- public static final String JHS_KEY_A="jhs:a";
- public static final String JHS_KEY_B="jhs:b";
-
- @Autowired
- private RedisTemplate redisTemplate;
-
- @RequestMapping(value = "/pruduct/findab",method = RequestMethod.GET)
- @ApiOperation("防止热点key突然失效,AB双缓存架构")
- public List
findAB(int page, int size) { - List
list=null; - long start = (page - 1) * size;
- long end = start + size - 1;
- try {
- //采用redis list数据结构的lrange命令实现分页查询
- list = this.redisTemplate.opsForList().range(JHS_KEY_A, start, end);
- if (CollectionUtils.isEmpty(list)) {
- log.info("=========A缓存已经失效了,记得人工修补,B缓存自动延续5天");
- //用户先查询缓存A(上面的代码),如果缓存A查询不到(例如,更新缓存的时候删除了),再查询缓存B
- this.redisTemplate.opsForList().range(JHS_KEY_B, start, end);
- //TODO 走DB查询
- }
- log.info("查询结果:{}", list);
- } catch (Exception ex) {
- //这里的异常,一般是redis瘫痪 ,或 redis网络timeout
- log.error("exception:", ex);
- //TODO 走DB查询
- }
- return list;
- }
- }
