正常高精度复杂度是o(n^2),fft复杂度o(nlogn)
- #define int long long//__int128 2^127-1(GCC)
- #define PII pair
- #define f first
- #define s second
- using namespace std;
- const int inf = 0x3f3f3f3f3f3f3f3f, N = 3e5 + 5, mod = 1e9 + 7;
- const double PI = acos(-1);
- int n, m;
- struct Complex
- {
- double x, y;
- Complex operator+ (const Complex& t) const
- {
- return { x + t.x, y + t.y };
- }
- Complex operator- (const Complex& t) const
- {
- return { x - t.x, y - t.y };
- }
- Complex operator* (const Complex& t) const
- {
- return { x * t.x - y * t.y, x * t.y + y * t.x };
- }
- }a[N], b[N];
-
- int rev[N], bit, tot;
- void fft(Complex a[], int inv)
- {
- for (int i = 0; i < tot; i++)
- if (i < rev[i])
- swap(a[i], a[rev[i]]);
- for (int mid = 1; mid < tot; mid <<= 1)
- {
- auto w1 = Complex({ cos(PI / mid), inv * sin(PI / mid) });
- for (int i = 0; i < tot; i += mid * 2)
- {
- auto wk = Complex({ 1, 0 });
- for (int j = 0; j < mid; j++, wk = wk * w1)
- {
- auto x = a[i + j], y = wk * a[i + j + mid];
- a[i + j] = x + y, a[i + j + mid] = x - y;
- }
- }
- }
- }
- signed main() {
- ios_base::sync_with_stdio(0);
- cin.tie(0), cout.tie(0);
- string aa, bb;
- cin >> aa >> bb;
- n = aa.size()-1, m = bb.size()-1;
- for (int i = 0; i <= n; i++) { a[i].x = aa[i] - '0'; }
- for (int i = 0; i <= m; i++) { b[i].x = bb[i] - '0'; }
- while ((1 << bit) < n + m + 1) bit++;
- tot = 1 << bit;
- for (int i = 0; i < tot; i++) {
- rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
- }
- fft(a, 1), fft(b, 1);
- for (int i = 0; i < tot; i++) a[i] = a[i] * b[i];
- fft(a, -1);
- string s;
- int t=0;
- for (int i = n+m; i >= 0; i--) {
- t+=(int)(a[i].x / tot + 0.5);
- s+=t%10+'0';
- t/=10;
- }
- if(t) s+=t+'0';
- reverse(s.begin(),s.end());
- cout<
- }