• 你还弄不清xxxForCausalLM和xxxForConditionalGeneration吗?


    Part1基本介绍

    大语言模型目前一发不可收拾,在使用的时候经常会看到transformers库的踪影,其中xxxCausalLM和xxxForConditionalGeneration会经常出现在我们的视野中,接下来我们就来聊聊transformers库中的一些基本任务。

    这里以三类模型为例:bert(自编码)、gpt(自回归)、bart(编码-解码)

    首先我们整体看下每个模型有什么任务:

    from ..bart.modeling_bart import (
        BartForCausalLM,
        BartForConditionalGeneration,
        BartForQuestionAnswering,
        BartForSequenceClassification,
        BartModel,
    )
    from ..bert.modeling_bert import (
        BertForMaskedLM,
        BertForMultipleChoice,
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
        BertLMHeadModel,
        BertModel,
    )
    from ..gpt2.modeling_gpt2 import GPT2ForSequenceClassification, GPT2LMHeadModel, GPT2Model
    

    1Bert

    • BertModel(BertPreTrainedModel):最原始的bert,可获得句向量表示或者每个token的向量表示。

    • BertForPreTraining(BertPreTrainedModel):在BertModel的基础上加了一个预训练头:

    self.bert = BertModel(config)
    self.cls = BertPreTrainingHeads(config)
    
    class BertPreTrainingHeads(nn.Module):
        def __init__(self, config):
            super().__init__()
            self.predictions = BertLMPredictionHead(config)
            self.seq_relationship = nn.Linear(config.hidden_size, 2)
    
        def forward(self, sequence_output, pooled_output):
            prediction_scores = self.predictions(sequence_output)
            seq_relationship_score = self.seq_relationship(pooled_output)
            return prediction_scores, seq_relationship_score
    
    class BertLMPredictionHead(nn.Module):
        def __init__(self, config):
            super().__init__()
            self.transform = BertPredictionHeadTransform(config)
    
            # The output weights are the same as the input embeddings, but there is
            # an output-only bias for each token.
            self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
    
            self.bias = nn.Parameter(torch.zeros(config.vocab_size))
    
            # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
            self.decoder.bias = self.bias
    
        def forward(self, hidden_states):
            hidden_states = self.transform(hidden_states)
            hidden_states = self.decoder(hidden_states)
            return hidden_states
    
    
    对应bert的两个训练任务:掩码语言模型(MLM)和下一个句子预测(NSP)。
    
    • BertLMHeadModel(BertPreTrainedModel):MLM任务
    self.bert = BertModel(config, add_pooling_layer=False)
    self.cls = BertOnlyMLMHead(config)
    
    class BertOnlyMLMHead(nn.Module):
        def __init__(self, config):
            super().__init__()
            self.predictions = BertLMPredictionHead(config)
    
        def forward(selfsequence_output: torch.Tensor) -> torch.Tensor:
            prediction_scores = self.predictions(sequence_output)
            return prediction_scores
    
    class BertLMPredictionHead(nn.Module):
        def __init__(self, config):
            super().__init__()
            self.transform = BertPredictionHeadTransform(config)
    
            # The output weights are the same as the input embeddings, but there is
            # an output-only bias for each token.
            self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
    
            self.bias = nn.Parameter(torch.zeros(config.vocab_size))
    
            # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
            self.decoder.bias = self.bias
    
        def forward(self, hidden_states):
            hidden_states = self.transform(hidden_states)
            hidden_states = self.decoder(hidden_states)
            return hidden_states
    
    • BertForNextSentencePrediction(BertPreTrainedModel):NSP任务
    self.bert = BertModel(config)
    self.cls = BertOnlyNSPHead(config)
    
    class BertOnlyNSPHead(nn.Module):
        def __init__(self, config):
            super().__init__()
            self.seq_relationship = nn.Linear(config.hidden_size, 2)
    
        def forward(self, pooled_output):
            seq_relationship_score = self.seq_relationship(pooled_output)
            return seq_relationship_score
    
    • BertForSequenceClassification(BertPreTrainedModel):对句子进行分类
    self.bert = BertModel(config)
    classifier_dropout = (
        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
    )
    self.dropout = nn.Dropout(classifier_dropout)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
    
    • BertForMultipleChoice(BertPreTrainedModel)::多项选择
    self.bert = BertModel(config)
    classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
    self.dropout = nn.Dropout(classifier_dropout)
    self.classifier = nn.Linear(config.hidden_size, 1)
    
    • BertForTokenClassification(BertPreTrainedModel):对token进行分类,一般为命名实体识别任务
    self.bert = BertModel(config, add_pooling_layer=False)
    classifier_dropout = (
        config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
    )
    self.dropout = nn.Dropout(classifier_dropout)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
    
    • BertForQuestionAnswering(BertPreTrainedModel):QA任务,很多任务都可以转换为这种形式。即识别答案的开始位置和结束位置。
    self.bert = BertModel(config, add_pooling_layer=False)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
    

    2GPT2

    • GPT2Model(GPT2PreTrainedModel):原始的GPT2模型,返回每个token的向量。

    • GPT2LMHeadModel(GPT2PreTrainedModel):进行语言模型任务。判断每一个token的下一个token是什么、

    self.transformer = GPT2Model(config)
    self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
    
    • GPT2DoubleHeadsModel(GPT2PreTrainedModel):除了语言模型任务外,额外定义了一个任务:多项选择任务。比如一个问题有两个回答,一个正确回答,一个错误回答,进行二分类任务判断哪一个是正确回答。当然可以扩展到多个选项。
     config.num_labels = 1
     self.transformer = GPT2Model(config)
     self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
     self.multiple_choice_head = SequenceSummary(config)
    

    这个要看个例子:

    import torch
    from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
    
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
    
    choices = [ "Bob likes candy ; what does Bob like ?  Bag <|endoftext|>",
                       "Bob likes candy ; what does Bob like ?  Burger <|endoftext|>",
                       "Bob likes candy ; what does Bob like ?  Candy <|endoftext|>",
                      "Bob likes candy ; what does Bob like ?  Apple <|endoftext|>"]
    
    encoded_choices = [tokenizer.encode(s) for s in choices]
    
    eos_token_location = [tokens.index(tokenizer.eos_token_id) for tokens in encoded_choices]
    input_ids = torch.tensor(encoded_choices).unsqueeze(0) 
    mc_token_ids = torch.tensor([eos_token_location]) 
    print(input_ids.shape)
    print(mc_token_ids.shape)
    outputs = model(input_ids, mc_token_ids=mc_token_ids)
    lm_prediction_scores, mc_prediction_scores = outputs[:2]
    print(lm_prediction_scores.shape)
    print(mc_prediction_scores)
    
    """
    torch.Size([1, 4, 13])
    torch.Size([1, 4])
    torch.Size([1, 4, 13, 50257])
    tensor([[-6.0075, -6.0649, -6.0657, -6.0585]], grad_fn=)
    """
    

    Confused by GPT2DoubleHeadsModel example · Issue #1794 · huggingface/transformers (github.com)

    How to use GPT2DoubleHeadsModel? · Issue #3680 · huggingface/transformers (github.com)

    • GPT2ForSequenceClassification(GPT2PreTrainedModel):显然,针对于文本分类任务
    self.transformer = GPT2Model(config)
    self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
    
    • GPT2ForTokenClassification(GPT2PreTrainedModel):针对于token分类(命名实体识别任务)
    self.transformer = GPT2Model(config)
    if hasattr(config"classifier_dropout"and config.classifier_dropout is not None:
        classifier_dropout = config.classifier_dropout
    elif hasattr(config"hidden_dropout"and config.hidden_dropout is not None:
        classifier_dropout = config.hidden_dropout
    else:
        classifier_dropout = 0.1
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
    

    举个例子:

    import torch
    from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel, GPT2Model
    
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    model = GPT2Model.from_pretrained('gpt2')
    
    text = [
      "Bob likes candy ; what does Bob like ?  Bag <|endoftext|>", 
      "Bob likes candy ; what does Bob like ?  Bag <|endoftext|>"
    ]
    
    inputs = tokenizer(text, return_tensors="pt")
    print(inputs)
    print(tokenizer.decode(inputs["input_ids"][0]))
    
    output = model(**inputs)
    print(output[0].shape)
    
    """
    {'input_ids': tensor([[18861,  7832, 18550,  2162,   644,   857,  5811,   588,  5633,   220,
             20127,   220, 50256],
            [18861,  7832, 18550,  2162,   644,   857,  5811,   588,  5633,   220,
             20127,   220, 50256]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
    Bob likes candy ; what does Bob like?  Bag <|endoftext|>
    torch.Size([2, 13, 768])
    """
    

    3BART

    • BartModel(BartPretrainedModel):bart的原始模型,返回解码器每个token的向量。当然还有其它可选的。

    • BartForConditionalGeneration(BartPretrainedModel):顾名思义,条件文本生成。

    self.model = BartModel(config)
    self.register_buffer("final_logits_bias", torch.zeros((1self.model.shared.num_embeddings)))
    self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
    

    输入一般我们需要定义:input_ids(编码器的输入)、attention_mask (编码器注意力)、decoder_input_ids(解码器的输入),target_attention_mask(解码器注意力)输出一般我们使用的有两个 loss=masked_lm_loss和 logits=lm_logits。

    • BartForSequenceClassification(BartPretrainedModel):文本分类
    self.model = BartModel(config)
    self.classification_head = BartClassificationHead(
        config.d_model,
        config.d_model,
        config.num_labels,
        config.classifier_dropout,
    )
    
    class BartClassificationHead(nn.Module):
        """Head for sentence-level classification tasks."""
    
        def __init__(
            self,
            input_dim: int,
            inner_dim: int,
            num_classes: int,
            pooler_dropout: float,
        ):
            super().__init__()
            self.dense = nn.Linear(input_dim, inner_dim)
            self.dropout = nn.Dropout(p=pooler_dropout)
            self.out_proj = nn.Linear(inner_dim, num_classes)
    
        def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
            hidden_states = self.dropout(hidden_states)
            hidden_states = self.dense(hidden_states)
            hidden_states = torch.tanh(hidden_states)
            hidden_states = self.dropout(hidden_states)
            hidden_states = self.out_proj(hidden_states)
            return hidden_states
    

    具体的获取logits是这么操作的:

    hidden_states = outputs[0]  # last hidden state
    # 找到eos_mask的位置
    eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
    
    if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
        raise ValueError("All examples must have the same number of  tokens.")
        sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
            :, -1, :
        ]
    logits = self.classification_head(sentence_representation)
    
    
    

    损失计算:

    loss = None
    if labels is not None:
        labels = labels.to(logits.device)
        if self.config.problem_type is None:
            if self.config.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                self.config.problem_type = "single_label_classification"
            else:
                self.config.problem_type = "multi_label_classification"
    
                if self.config.problem_type == "regression":
                    loss_fct = MSELoss()
                    if self.config.num_labels == 1:
                        loss = loss_fct(logits.squeeze(), labels.squeeze())
                    else:
                        loss = loss_fct(logits, labels)
                    elif self.config.problem_type == "single_label_classification":
                        loss_fct = CrossEntropyLoss()
                        loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
                    elif self.config.problem_type == "multi_label_classification":
                        loss_fct = BCEWithLogitsLoss()
    
    • BartForQuestionAnswering(BartPretrainedModel):问答和之前GPT基本一致,只不过这里的输入到计算logits前的向量是解码器的隐含层向量。
    config.num_labels = 2
    self.num_labels = config.num_labels
    
    self.model = BartModel(config)
    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
    
    sequence_output = outputs[0]
    logits = self.qa_outputs(sequence_output)
    start_logits, end_logits = logits.split(1, dim=-1)
    start_logits = start_logits.squeeze(-1).contiguous()
    end_logits = end_logits.squeeze(-1).contiguous()
    
    
    • BartForCausalLM(BartPretrainedModel):语言模型任务,只使用bart的解码器。
    config = copy.deepcopy(config)
    config.is_decoder = True
    config.is_encoder_decoder = False
    super().__init__(config)
    self.model = BartDecoderWrapper(config)
    
    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
    
    outputs = self.model.decoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                head_mask=head_mask,
                cross_attn_head_mask=cross_attn_head_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
    )
    
    logits = self.lm_head(outputs[0])
    
    >>> from transformers import AutoTokenizer, BartForCausalLM
    >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
    >>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False)
    >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
    >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    >>> outputs = model(**inputs)
    
    >>> logits = outputs.logits
    >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
    >>> list(logits.shape) == expected_shape
    True
    

    Part2实操

    接下来针对xxxCausalLM和xxxForConditionalGeneration,我们实际操作来更加深入的了解它们。首先需要安装一些依赖:

    pip install transformers==4.28.1
    pip install evaluate
    pip install datasets
    

    4使用GPT2进行观点评论生成

    数据从这里下载:https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/ChnSentiCorp_htl_all.csv

    直接上代码:

    import torch
    from tqdm import tqdm
    from datasets import load_dataset
    from transformers import AutoTokenizer, AutoModelForCausalLM
    from transformers import (
        default_data_collator,
        get_linear_schedule_with_warmup,
    )
    from torch.utils.data import DataLoader
    
    data_file = "./ChnSentiCorp_htl_all.csv"  # 数据文件路径,数据需要提前下载
    max_length = 86
    train_batch_size = 64
    eval_batch_size = 64
    num_epochs = 10
    lr = 3e-4
    
    # 加载数据集
    dataset = load_dataset("csv", data_files=data_file)
    dataset = dataset.filter(lambda x: x["review"is not None)
    dataset = dataset["train"].train_test_split(0.2, seed=123)
    
    model_name_or_path = "uer/gpt2-chinese-cluecorpussmall"
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
    
    
    # example = {'label': 1, 'review': '早餐太差,无论去多少人,那边也不加食品的。酒店应该重视一下这个问题了。房间本身很好。'}
    
    
    def process(example):
        text = example["review"]
        # text = ["399真的很值得之前也住过别的差不多价位的酒店式公寓没有这间好厨房很像厨房很大整个格局也都很舒服早上的早餐我订的8点半的已经冷了。。。位置啊什么还是很好的下次还会去服务也很周到"]
        batch_size = len(text)
        inputs = tokenizer(text, add_special_tokens=False, truncation=True, max_length=max_length)
        inputs["labels"] = []
        for i in range(batch_size):
            input_ids = inputs["input_ids"][i]
            if len(input_ids) + 1 <= max_length:
                inputs["input_ids"][i] = input_ids + [tokenizer.pad_token_id] + [0] * (max_length - len(input_ids) - 1)
                inputs["labels"].append(input_ids + [tokenizer.pad_token_id] + [-100] * (max_length - len(input_ids) - 1))
                inputs["attention_mask"][i] = [1] * len(input_ids) + [0] + [0] * (max_length - len(input_ids) - 1)
            else:
                inputs["input_ids"][i] = input_ids[:max_length - 1] + [tokenizer.pad_token_id]
                inputs["labels"].append(inputs["input_ids"][i])
                inputs["attention_mask"][i] = [1] * max_length
    
            inputs["token_type_ids"][i] = [0] * max_length
            # for k, v in inputs.items():
            #   print(k, len(v[0]))
            # assert len(inputs["labels"][i]) == len(inputs["input_ids"][i]) == len(inputs["token_type_ids"][i]) == len(inputs["attention_mask"][i]) == 86
        return inputs
    
    
    # process(None)
    
    train_dataset = dataset["train"].map(process, batched=True, num_proc=1, remove_columns=dataset["train"].column_names)
    test_dataset = dataset["test"].map(process, batched=True, num_proc=1, remove_columns=dataset["test"].column_names)
    
    train_dataloader = DataLoader(
        train_dataset, collate_fn=default_data_collator, shuffle=True, batch_size=train_batch_size, pin_memory=True
    )
    
    test_dataloader = DataLoader(
        test_dataset, collate_fn=default_data_collator, batch_size=eval_batch_size, pin_memory=True
    )
    
    # optimizer
    
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
    
    # lr scheduler
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=(len(train_dataloader) * num_epochs),
    )
    
    model.cuda()
    
    from tqdm import tqdm
    
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        t = tqdm(train_dataloader)
        for step, batch in enumerate(t):
            for k, v in batch.items():
                batch[k] = v.cuda()
            outputs = model(
                input_ids=batch["input_ids"],
                token_type_ids=batch["token_type_ids"],
                attention_mask=batch["attention_mask"],
                labels=batch["labels"],
            )
            loss = outputs.loss
            t.set_description("loss:{:.6f}".format(loss.item()))
            total_loss += loss.detach().float()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
    
        train_epoch_loss = total_loss / len(train_dataloader)
        model.save_pretrained("gpt2-chinese/")
        print(f"epoch:{epoch+1}/{num_epochs} loss:{train_epoch_loss}")
    

    训练结果:

    loss:2.416899: 100%|██████████| 98/98 [01:51<00:00,  1.14s/it]
    epoch:1/10 loss:2.7781832218170166
    loss:2.174688: 100%|██████████| 98/98 [01:54<00:00,  1.17s/it]
    epoch:2/10 loss:2.3192219734191895
    loss:2.123909: 100%|██████████| 98/98 [01:55<00:00,  1.17s/it]
    epoch:3/10 loss:2.037835121154785
    loss:1.785878: 100%|██████████| 98/98 [01:55<00:00,  1.18s/it]
    epoch:4/10 loss:1.7687807083129883
    loss:1.466153: 100%|██████████| 98/98 [01:55<00:00,  1.18s/it]
    epoch:5/10 loss:1.524872064590454
    loss:1.465316: 100%|██████████| 98/98 [01:54<00:00,  1.17s/it]
    epoch:6/10 loss:1.3074666261672974
    loss:1.150320: 100%|██████████| 98/98 [01:54<00:00,  1.16s/it]
    epoch:7/10 loss:1.1217808723449707
    loss:1.043044: 100%|██████████| 98/98 [01:53<00:00,  1.16s/it]
    epoch:8/10 loss:0.9760875105857849
    loss:0.790678: 100%|██████████| 98/98 [01:53<00:00,  1.16s/it]
    epoch:9/10 loss:0.8597695827484131
    loss:0.879025: 100%|██████████| 98/98 [01:53<00:00,  1.16s/it]
    epoch:10/10 loss:0.790839433670044
    

    可以这么进行预测:

    from transformers import AutoTokenizer, GPT2LMHeadModel, TextGenerationPipeline, AutoModelForCausalLM
    from datasets import load_dataset
    data_file = "./ChnSentiCorp_htl_all.csv" # 数据文件路径,数据需要提前下载
    dataset = load_dataset("csv", data_files=data_file)
    dataset = dataset.filter(lambda x: x["review"is not None)
    dataset = dataset["train"].train_test_split(0.2, seed=123)
    
    model_name_or_path = "uer/gpt2-chinese-cluecorpussmall"
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    model = AutoModelForCausalLM.from_pretrained("./gpt2-chinese/")
    text_generator = TextGenerationPipeline(model, tokenizer)  
    
    import random
    examples = dataset["train"]
    example = random.choice(examples)
    text = example["review"]
    print(text)
    print(text[:10])
    text_generator(text[:10], 
            max_length=100, 
            do_sample=False, 
            top_p=0.8, 
            repetition_penalty=10.0,
            temperature=0.95,
            eos_token_id=0, 
            )
    """
    第一次住在这里儿,我针对大家的意见,特别关注了一下,感觉如下吧!1、标准间虽然有点旧但很干净,被子盖得很舒服,也很暖和,卫生间也蛮大的,因是在商业中心离很多还算很近。2、酒店服务还算可以,没有像这里说的那样,入住时,退房时也挺快的,总的来说我很满意。3、早餐也还可以,环境也不错,有点江南的感觉;菜品种品也不少,挺可口。4、可能是在市或者离火车站的距离很近,稍微有点“热闹”,来找我办事的人不方便停车,但还好这里有地下停车场。总体来说,我感觉很不错,值得推荐!!!
    第一次住在这里儿,我
    [{'generated_text': '第一次住在这里儿,我 感 觉 很 温 馨 。 房 间 宽 敞 、 干 净 还 有 水 果 送 ( 每 人 10 元 ) ; 饭 菜 也 不 错 ! 价 格 合 理 经 济 实 惠 .'}]
    """
    

    我们需要注意的几点:

    • 不同模型使用的tokenizer是不一样的,需要注意它们的区别,尤其是pad_token_id和eos_token_id。eos_token_id常常用于标识生成文本的结尾。

    • 有一些中文的生成预训练模型使用的还是Bert的tokenizer,在进行token化的时候,通过指定add_special_tokens=False来避免添加[CLS]和[SEP]。

    • BertTokenizer的eos_token_id为None,这里我们用[PAD]视为生成结束的符号,其索引为0.当然,你也可以设置它为词表里面的特殊符号,比如[SEP]。

    • 对于不需要计算损失的token,我们将其标签设置为-100。

    • 我们的labels和input_ids为什么是一样的,不是说根据上一个词生成下一个词吗?这是因为模型里面帮我们处理了,见代码:

    shift_logits = lm_logits[..., :-1, :].contiguous()
    shift_labels = labels[..., 1:].contiguous()
    
    • 进行预测有三种方式,控制文本生成的多样性有很多参数可以选择,具体刚兴趣可参考最后面的链接。

    5使用BART进行对联生成

    数据从这里下载:https://www.modelscope.cn/datasets/minisnow/couplet_samll.git

    直接看代码:

    import json
    import pandas as pd
    import numpy as np
    # import lawrouge
    from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline, pipeline
    from datasets import load_dataset, Dataset
    from transformers import default_data_collator
    import torch
    from tqdm import tqdm
    from datasets import load_dataset
    from transformers import (
        default_data_collator,
        get_linear_schedule_with_warmup,
    )
    from torch.utils.data import DataLoader
    
    
    # ============================= 
    # 加载数据
    train_path = "couplet_samll/train.csv"
    train_dataset = Dataset.from_csv(train_path)
    test_path = "couplet_samll/test.csv"
    test_dataset = Dataset.from_csv(test_path)
    
    max_len = 24
    train_batch_size = 64
    eval_batch_size = 64
    lr = 3e-4
    num_epochs = 1
    
    # 转换为模型需要的格式
    def tokenize_dataset(tokenizer, dataset, max_len):
      def convert_to_features(batch):
        text1 = batch["text1"]
        text2 = batch["text2"]
        inputs = tokenizer.batch_encode_plus(
          text1,
          max_length=max_len,
          padding="max_length",
          truncation=True,
        )
        targets = tokenizer.batch_encode_plus(
          text2,
          max_length=max_len,
          padding="max_length",
          truncation=True,
        )
        outputs = {
          "input_ids": inputs["input_ids"],
          "attention_mask": inputs["attention_mask"],
          "target_ids": targets["input_ids"],
          "target_attention_mask": targets["attention_mask"]
        }
        return outputs
      
      dataset = dataset.map(convert_to_features, batched=True)
      # Set the tensor type and the columns which the dataset should return
      columns = ['input_ids''target_ids''attention_mask''target_attention_mask']
      dataset.with_format(type='torch', columns=columns)
      dataset = dataset.rename_column('target_ids''labels')
      dataset = dataset.rename_column('target_attention_mask''decoder_attention_mask')
      dataset = dataset.remove_columns(['text1''text2'])
      return dataset
    
    tokenizer = BertTokenizer.from_pretrained("fnlp/bart-base-chinese")
    
    train_data = tokenize_dataset(tokenizer, train_dataset, max_len)
    test_data = tokenize_dataset(tokenizer, test_dataset, max_len)
    
    train_dataset = train_data
    train_dataloader = DataLoader(
        train_dataset, collate_fn=default_data_collator, shuffle=True, batch_size=train_batch_size, pin_memory=True
    )
    test_dataset = test_data
    test_dataloader = DataLoader(
        test_dataset, collate_fn=default_data_collator, batch_size=eval_batch_size, pin_memory=True
    )
    
    # optimizer
    model = BartForConditionalGeneration.from_pretrained("fnlp/bart-base-chinese")
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
    
    # lr scheduler
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=(len(train_dataloader) * num_epochs),
    )
    
    model.cuda()
    
    from tqdm import tqdm
    
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        t = tqdm(train_dataloader)
        for step, batch in enumerate(t):
            for k, v in batch.items():
                batch[k] = v.cuda()
            outputs = model(**batch)
            loss = outputs.loss
            t.set_description("loss:{:.6f}".format(loss.item()))
            total_loss += loss.detach().float()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
    
        train_epoch_loss = total_loss / len(train_dataloader)
        model.save_pretrained("bart-couplet/")
        tokenizer.save_pretrained("bart-couplet/")
        print(f"epoch:{epoch+1}/{num_epochs} loss:{train_epoch_loss}")
    

    结果:

    loss:1.593506: 100%|██████████| 4595/4595 [33:28<00:00,  2.29it/s]
    epoch:1/1 loss:1.76453697681427
    

    我们可以这么预测:

    from transformers import Text2TextGenerationPipeline
    model_path = "bart-couplet"
    # model_path = "fnlp/bart-base-chinese"
    model = BartForConditionalGeneration.from_pretrained(model_path)
    tokenizer = BertTokenizer.from_pretrained(model_path)
    generator = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)
    
    max_len = 24
    
    test_path = "couplet_samll/test.csv"
    test_data = pd.read_csv(test_path)
    texts = test_data["text1"].values.tolist()
    labels = test_data["text2"].values.tolist()
    
    results = generator(texts, max_length=max_len, eos_token_id=102, pad_token_id=0, do_sample=True)
    for text, label, res in zip(texts, labels, results):
      print("上联:", text)
      print("真实下联:", label)
      print("预测下联:""".join(res["generated_text"].split(" ")))
      print("="*100)
        
    """
    上联: 几帧山水关秋路
    真实下联: 无奈胭脂点绛唇
    预测下联: 天高云淡月光明
    ====================================================================================================
    上联: 许多心事懒收拾
    真实下联: 大好青春莫撂荒
    预测下联: 何妨明月照寒窗
    ====================================================================================================
    上联: 谁同执手人间老
    真实下联: 自愿并肩化外游
    预测下联: 心中有梦月当头
    ====================================================================================================
    上联: 画地为牢封自步
    真实下联: 齐天大圣悟空行
    预测下联: 不妨一世好清闲
    ====================================================================================================
    上联: 布谷携春临五岳
    真实下联: 流莺送喜到千家
    预测下联: 万家灯火庆丰年
    ====================================================================================================
    上联: 冤家宜解不宜结
    真实下联: 穷寇定歼必定追
    预测下联: 不因风雨误春秋
    ====================================================================================================
    上联: 汪伦情义人间少
    真实下联: 法律条文格外繁
    预测下联: 一江春水向东流
    ====================================================================================================
    上联: 泼墨吟诗,银发人生添雅兴
    真实下联: 手机短信,古稀老叟逐新潮
    预测下联: 春风得意,万里千帆逐浪高
    ====================================================================================================
    上联: 刊岫展屏山,云凝罨画
    真实下联: 平湖环镜槛,波漾空明
    预测下联: 千年古邑,百花芳草淹春
    ====================================================================================================
    上联: 且向人间赊一醉
    真实下联: 直如岛外泛孤舟
    预测下联: 春风得意乐逍遥
    ====================================================================================================
    """
    

    需要注意的地方:

    • 这里我们的输入不再是单条文本,而是文本对。
    • 我们需要构造编码器Input_ids,编码器attention_mask,解码器input_ids,解码器attention_mask。
    • 这里使用了一个技巧:采样生成,设置do_sample=True。如果你尝试设置它为False,你会发现生成的结果可能不是那么好。
    • 同样的这里使用的还是Bert的tokenizer,这里进行tokenizer的时候我们保留了bert的[CLS]和[SEP]。为了更直观的理解,我们使用另一种更直接的方法来生成结果:
    model = BartForConditionalGeneration.from_pretrained(model_path)
    model = model.to("cuda")
    model.eval()
    inputs = tokenizer(
            texts,
            padding="max_length",
            truncation=True,
            max_length=max_len,
            return_tensors="pt",
        )
    input_ids = inputs.input_ids.to(model.device)
    attention_mask = inputs.attention_mask.to(model.device)
    # 生成
    outputs = model.generate(input_ids, 
                  attention_mask=attention_mask, 
                  max_length=max_len, 
                  do_sample=True, 
                  pad_token_id=0,
                  eos_token_id=102)
    # 将token转换为文字
    output_str = tokenizer.batch_decode(outputs, skip_special_tokens=False)
    output_str = [s.replace(" ",""for s in output_str]
    for text, label, pred in zip(texts, labels, output_str):
      print("上联:", text)
      print("真实下联:", label)
      print("预测下联:", pred)
      print("="*100)
    

    结果:

    上联: 几帧山水关秋路
    真实下联: 无奈胭脂点绛唇
    预测下联: [SEP][CLS]春风送暖柳含烟[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 许多心事懒收拾
    真实下联: 大好青春莫撂荒
    预测下联: [SEP][CLS]无私奉献为人民[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 谁同执手人间老
    真实下联: 自愿并肩化外游
    预测下联: [SEP][CLS]清风明月是知音[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 画地为牢封自步
    真实下联: 齐天大圣悟空行
    预测下联: [SEP][CLS]月明何处不相逢[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 布谷携春临五岳
    真实下联: 流莺送喜到千家
    预测下联: [SEP][CLS]一壶老酒醉春风[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 冤家宜解不宜结
    真实下联: 穷寇定歼必定追
    预测下联: [SEP][CLS]风流人物不虚名[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 汪伦情义人间少
    真实下联: 法律条文格外繁
    预测下联: [SEP][CLS]万里江山万里春[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    上联: 泼墨吟诗,银发人生添雅兴
    真实下联: 手机短信,古稀老叟逐新潮
    预测下联: [SEP][CLS]和谐社会,和谐和谐幸福家[SEP]
    ====================================================================================================
    上联: 刊岫展屏山,云凝罨画
    真实下联: 平湖环镜槛,波漾空明
    预测下联: [SEP][CLS]天下无双,人寿年丰[SEP][PAD][PAD][PAD]
    ====================================================================================================
    上联: 且向人间赊一醉
    真实下联: 直如岛外泛孤舟
    预测下联: [SEP][CLS]不知何处有闲人[SEP][PAD][PAD][PAD][PAD][PAD]
    ====================================================================================================
    
    • 我们设置skip_special_tokens=False,在生成时不忽略特殊token。
    • 以"无奈胭脂点绛唇"为例。输入[SEP],预测得到[CLS],输入[SEP][CLS]得到正常的文本,最后以[SEP]结尾。因为我们的encoder_input_ids和decoder_input_ids都是加了特殊符号的。当然你可以不加或者自定义使用其它的特殊符号。

    到这里,你已经了解了transformers库中自带的模型及相关的一些任务了,特别是针对生成模型有了更深一层的了解,赶紧去试试吧。

    最后附上相关的一些知识:

    https://zhuanlan.zhihu.com/p/624845975

    Part3参考

    transformers.models.auto.modeling_auto — transformers 4.4.2 documentation (huggingface.co)

  • 相关阅读:
    C++项目——云备份-⑤-数据管理模块的设计与实现
    go 学习 之 HTTP微服务示例
    优秀的项目经理如何寻找到价值贡献点?如何成为价值型项目经理?
    JavaScipt设计模式初探-代理模式(二) 保护代理
    DTD之XML的元素&属性定义
    Linux系统的常见变种、发行版有哪些 Debian,CentOS等
    力诺转债上市价格预测
    AcWing245. 你能回答这些问题吗 线段树详解
    UE5 - ArchvizExplorer - 数字孪生城市模板 - 功能修改
    OceanBase 首席科学家阳振坤博士入选2022 年度“CCF王选奖”
  • 原文地址:https://www.cnblogs.com/xiximayou/p/17356543.html