• LeetCode - Medium - 62. Unique Paths


    Topic

    • Math
    • Dynamic Programming
    • Combinatorics

    Description

    link

    There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

    Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

    The test cases are generated so that the answer will be less than or equal to 2 * 109.

    Example 1:

    Input: m = 3, n = 7
    Output: 28
    
    • 1
    • 2

    Example 2:

    Input: m = 3, n = 2
    Output: 3
    Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
    1. Right -> Down -> Down
    2. Down -> Down -> Right
    3. Down -> Right -> Down
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    Constraints:

    • 1 <= m, n <= 100

    Analysis

    方法一:深度优先搜索(略)

    方法二:动态规划(递归版与迭代版)

    方法三:组合数学公式(略)

    标略的参考详细解题说明-Carl的教程

    Submissions

    public class UniquePaths {
    	
    	//方法二:动态规划(递归版)
    	public int uniquePaths(int m, int n) {
    		int[][] dp = new int[m][n];
    		return helper(m - 1, n - 1, dp);
    	}
    	
    	private int helper(int i, int j, int[][] dp) {
    		if(dp[i][j] == 0) {
    			if(i == 0 || j == 0) {
    				dp[i][j] = 1;
    			}else {
    				dp[i][j] = helper(i - 1, j, dp) + helper(i, j - 1, dp);
    			}
    		}
    		return dp[i][j];
    	}
    
    	//方法二:动态规划(迭代版)
    	public int uniquePaths2(int m, int n) {
    		int[][] dp = new int[m][n];
    		
    		for (int i = 0; i < m; i++) {
    			for (int j = 0; j < n; j++) {
    				if (i == 0 || j == 0) {
    					dp[i][j] = 1;
    				} else {
    					dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
    				}
    			}
    		}
    		return dp[m - 1][n - 1];
    	}
    	
    	
    	//方法二:动态规划(迭代版)(优化)
    	public int uniquePaths3(int m, int n) {
    		int[] dp = new int[n];
    
    		for (int i = 0; i < m; i++) {
    			for (int j = 0; j < n; j++) {
    				if (i == 0) {
    					dp[j] = 1;
    				} else if (j > 0) {
    					dp[j] += dp[j - 1];
    				}
    			}
    		}
    
    		return dp[n - 1];
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53

    Test

    import static org.junit.Assert.*;
    
    import org.junit.Test;
    
    public class UniquePathsTest {
    
    	@Test
    	public void testUniquePaths() {
    		UniquePaths up = new UniquePaths();
    		
    		assertEquals(28, up.uniquePaths(3, 7));
    		assertEquals(3, up.uniquePaths(3, 2));
    
    		assertEquals(28, up.uniquePaths(3, 7));
    		assertEquals(3, up.uniquePaths(3, 2));
    		
    		assertEquals(28, up.uniquePaths3(3, 7));
    		assertEquals(3, up.uniquePaths3(3, 2));
    	}
    
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • 相关阅读:
    【Linux】环境基础开发工具使用
    C++中统计代码的运算时间
    TiDB 集群报警规则
    kyverno VS gateKeeper
    Java 集合的常用操作(ArrayList, LinkedList, HashSet, HashMap)
    ROS学习(28)Web GUI
    Go语言学习基础(二)编写注意,数据类型,关键字,标识符等
    深入浅出Java多线程(二):Java多线程类和接口
    Grid布局
    Spring IOC容器的这些扩展点你都了解吗?
  • 原文地址:https://blog.csdn.net/u011863024/article/details/128213613