流量消峰
订单系统为例
如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。
但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。
应用解耦
电商应用为例,
应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。
当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在 这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流 系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性。
异步处理
有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可以执行完,
A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此 消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样 B 服务也不 用做这些操作。A 服务还能及时的得到异步处理成功的消息。

ActiveMQ
优点:
缺点:
Kafka
优点: 性能卓越,单机写入 TPS 约在百万条/秒
缺点:
功能支持:
RocketMQ
优点:
缺点:
RabbitMQ
优点:
缺点:
Kafka
Kafka 主要特点是基于 Pull 的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集 和传输,适合产生大量数据的互联网服务的数据收集业务。
RocketMQ
天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。RoketMQ 在稳定性上可能更值得信赖
RabbitMQ
结合 erlang 语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分方便
RabbitMQ概念
RabbitMQ是由erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队列协议)协议实现的消息队列,它是一种应用程序之间的通信方法,消息队列在分布式系统开发中应用非常广泛
核心概念
生产者
产生数据发送消息的程序是生产者
交换机
消费者
消费者大多时候是一个等待接收消息的程序。请注意生产者,消费者和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又是可以是消费者。
队列


Connection:
publisher/consumer 和 broker 之间的 TCP 连接
Channel:
Broker:
接收和分发消息的应用,RabbitMQ Server 就是 Message Broker
Virtual host:
Exchange:
Queue:
消息最终被送到这里等待 consumer 取走
Binding:
exchange 和 queue 之间的虚拟连接,binding 中可以包含 routing key,Binding 信息被保 存到 exchange 中的查询表中,用于 message 的分发依据
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.pluginsgroupId>
<artifactId>maven-compiler-pluginartifactId>
<configuration>
<source>8source>
<target>8target>
configuration>
plugin>
plugins>
build>
<dependencies>
<dependency>
<groupId>com.rabbitmqgroupId>
<artifactId>amqp-clientartifactId>
<version>5.8.0version>
dependency>
<dependency>
<groupId>commons-iogroupId>
<artifactId>commons-ioartifactId>
<version>2.6version>
dependency>
dependencies>
public class Producer {
public static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
// 创建工厂
ConnectionFactory factory = new ConnectionFactory();
// 工厂Ip 连接队列
factory.setHost("127.0.0.1");
// 用户名
factory.setUsername("guest");
// 密码
factory.setPassword("guest");
// 创建连接
Connection connection = factory.newConnection();
// 获取信道
Channel channel = connection.createChannel();
/**
* Declare a queue
* @see com.rabbitmq.client.AMQP.Queue.Declare
* @see com.rabbitmq.client.AMQP.Queue.DeclareOk
* @param queue the name of the queue
* @param durable true if we are declaring a durable queue (the queue will survive a server restart)
* @param exclusive true if we are declaring an exclusive queue (restricted to this connection)
* @param autoDelete true if we are declaring an autodelete queue (server will delete it when no longer in use)
* @param arguments other properties (construction arguments) for the queue
* @return a declaration-confirm method to indicate the queue was successfully declared
* @throws java.io.IOException if an error is encountered
*/
channel.queueDeclare(QUEUE_NAME, false, false, false,null);
// 发消息
String message = "Hello World";
/**
* Publish a message.
*
* Publishing to a non-existent exchange will result in a channel-level
* protocol exception, which closes the channel.
*
* Invocations of Channel#basicPublish will eventually block if a
* resource-driven alarm is in effect.
*
* @see com.rabbitmq.client.AMQP.Basic.Publish
* @see Resource-driven alarms
* @param exchange the exchange to publish the message to
* @param routingKey the routing key
* @param props other properties for the message - routing headers etc
* @param body the message body
* @throws java.io.IOException if an error is encountered
*/
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
System.out.println("Send Success!");
}
}
public class Consumer {
private static final String QUEUE_NAME = "hello";
public static void main(String[] args) throws IOException, TimeoutException {
// 创建工厂
ConnectionFactory factory = new ConnectionFactory();
// 相关配置
factory.setHost("127.0.0.1");
factory.setUsername("guest");
factory.setPassword("guest");
// 创建连接
Connection connection = factory.newConnection();
// 创建信道
Channel channel = connection.createChannel();
// 声明 接受消息的回调
DeliverCallback deliverCallback = (consumerTag, message) -> {
System.out.println(new String(message.getBody()));
};
// 声明 取消消息的回调
CancelCallback cancelCallback = consumerTag -> {
System.out.println("消息消费中断~");
};
/**
* Start a non-nolocal, non-exclusive consumer, with
* a server-generated consumerTag.
* Provide access only to basic.deliver and
* basic.cancel AMQP methods (which is sufficient
* for most cases). See methods with a {@link com.rabbitmq.client.Consumer} argument
* to have access to all the application callbacks.
* @param queue the name of the queue
* @param autoAck true if the server should consider messages
* acknowledged once delivered; false if the server should expect
* explicit acknowledgements
* @param deliverCallback callback when a message is delivered
* @param cancelCallback callback when the consumer is cancelled
* @return the consumerTag generated by the server
* @throws IOException if an error is encountered
* @see com.rabbitmq.client.AMQP.Basic.Consume
* @see com.rabbitmq.client.AMQP.Basic.ConsumeOk
* @see #basicAck
* @see #basicConsume(String, boolean, String, boolean, boolean, Map, com.rabbitmq.client.Consumer)
* @since 5.0
*/
channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);
}
}
工作队列的主要思想是避免立即执行资源密集型任务,而不得不等待它完成。

注意事项 一个消息只能被处理一次,不可以被处理多次
抽取工具类
public class RabbitMQUtils {
public static Channel getChannel() throws Exception {
// 创建工厂
ConnectionFactory factory = new ConnectionFactory();
// 相关配置
factory.setHost("127.0.0.1");
factory.setUsername("guest");
factory.setPassword("guest");
// 创建连接
Connection connection = factory.newConnection();
// 创建信道
Channel channel = connection.createChannel();
return channel;
}
}
消息应答
为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是:消费者在接收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除
自动应答
消息发送后立即被认为已经传送成功
这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了
当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制, 当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死
所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。
消息应答方法
Channel.basicAck (用于肯定确认) RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了Channel.basicNack(用于否定确认)Channel.basicReject (用于否定确认) 与 Channel.basicNack 相比少一个参数不处理该消息直接拒绝,可以将其丢弃何为Mutiple
手动应答的好处是可以批量应答并且减少网络拥堵

参数mutiple
true 表示应答channel上未应答的消息
比如说 channel 上有传送 tag 的消息 5,6,7,8 当前 tag 是 8 那么此时 5-8 的这些还未应答的消息都会被确认收到消息应答 、

false 表示不应答channel上未应答的消息

消息自动重新入队
如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。

默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。
若创建的队列都是非持久化的,rabbitmq 如果重启,该队列就会被删除掉
如果要队列实现持久化需要在声明队列的时候把 durable 参数设置为持久化
// MQ持久化
boolean durable = true;
channel.queueDeclare(ACK_QUEUE_NAME, durable, false, false, null);
注意 如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误
控制台中 持久化与非持久化队列的 UI 显示区、

要想让消息实现持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。

将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强
场景模拟
在某种场景下,有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2 处理速度却很慢,这个时候我们还是采用轮询分发的话就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活,但是 RabbitMQ 并不知道这种情况它依然很公平的进行分发。
解决方案
为了避免这种情况,可以设置参数 channel.basicQos(1);


如果这个任务我还没有处理完或者我还没有应答你,你先别分配给我,我目前只能处理一个任务,然后 rabbitmq 就会把该任务分配给不忙的空闲消费者,当然如果所有的消费者都没有完成手上任务,队列还在不停的添加新任务,队列有可能就会遇到队列被撑满的情况,这个时候就只能添加新的 worker 或者改变其他存储任务的策略。
消息异步发送
本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息,另外来自消费者的手动确认本质上也是异步的。
因此这里就存在一个未确认的消息缓冲区,因此希望能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。
预取值
通过使用 basic.qos 方法设置**“预取计数”值来完成该需求。该值定义通道上允许的未确认消息的最大数量**。一旦数量达到配置的数量, RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认 。

生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker 就会发送一个确认给生产者(包含消息的唯一 ID),这就使得生产者知道消息已经正确到达目的队列了
如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置 basic.ack 的 multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。
confirm模式优点
confirm 模式是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消 息,生产者应用程序同样可以在回调方法中处理该 nack 消息。
发布确认默认是没有开启的,如果要开启需要调用方法 confirmSelect,每当你要想使用发布确认,都需要在 channel 上调用该方法
Channel channel = connection.createChannel();
channel.confirmSelect();
它是一种同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布
waitForConfirmsOrDie(long)这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。
缺点
发布速度特别的慢,因为如果没有确认发布的消息就会阻塞所有后续消息的发布
这种方式最多提供每秒不超过数百条发布消息的吞吐量
public static void publishMessageIndividually() throws Exception {
try (Channel channel = RabbitMqUtils.getChannel()) {
// 声明队列
String queueName = UUID.randomUUID().toString();
channel.queueDeclare(queueName, false, false, false, null);
// 开启发布确认
channel.confirmSelect();
// 开始时间
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = i + "";
channel.basicPublish("", queueName, null, message.getBytes());
// 服务端返回 false 或超时时间内未返回,生产者可以消息重发
boolean flag = channel.waitForConfirms();
if(flag){
System.out.println("消息发送成功");
}
}
// 结束时间
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个单独确认消息,耗时" + (end - begin) +
"ms");
}
}
与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地提高吞吐量
缺点
当发生故障导致发布出现问题时,不知道是哪个消息出现问题,必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种方案仍然是同步的,也一样阻塞消息的发布。
public static void publishMessageBatch() throws Exception {
try (Channel channel = RabbitMqUtils.getChannel()) {
// 声明队列
String queueName = UUID.randomUUID().toString();
channel.queueDeclare(queueName, false, false, false, null);
// 开启发布确认
channel.confirmSelect();
// 批量确认消息大小
int batchSize = 100;
// 未确认消息个数
int outstandingMessageCount = 0;
// 开始时间
long begin = System.currentTimeMillis();
// 批量发布
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = i + "";
channel.basicPublish("", queueName, null, message.getBytes());
outstandingMessageCount++;
if (outstandingMessageCount == batchSize) {
// 发布确认
channel.waitForConfirms();
outstandingMessageCount = 0;
}
}
//为了确保还有剩余没有确认消息 再次确认
if (outstandingMessageCount > 0) {
channel.waitForConfirms();
}
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个批量确认消息,耗时" + (end - begin) +
"ms");
}
}

public static void publishMessageAsync() throws Exception {
try (Channel channel = RabbitMqUtils.getChannel()) {
// 声明队列
String queueName = UUID.randomUUID().toString();
channel.queueDeclare(queueName, false, false, false, null);
// 开启发布确认
channel.confirmSelect();
/**
* 线程安全有序的一个哈希表,适用于高并发的情况
* 1.轻松的将序号与消息进行关联
* 2.轻松批量删除条目 只要给到序列号
* 3.支持并发访问
*/
ConcurrentSkipListMap<Long, String> outstandingConfirms = new
ConcurrentSkipListMap<>();
/**
* 确认收到消息的一个回调
* 1.消息序列号
* 2.true 可以确认小于等于当前序列号的消息
* 3.false 确认当前序列号消息
*/
ConfirmCallback ackCallback = (sequenceNumber, multiple) -> {
if (multiple) {
//返回的是小于等于当前序列号的未确认消息 是一个 map
ConcurrentNavigableMap<Long, String> confirmed =
outstandingConfirms.headMap(sequenceNumber, true);
//清除该部分未确认消息
confirmed.clear();
}else{
//只清除当前序列号的消息
outstandingConfirms.remove(sequenceNumber);
}
};
ConfirmCallback nackCallback = (sequenceNumber, multiple) -> {
String message = outstandingConfirms.get(sequenceNumber);
System.out.println("发布的消息"+message+"未被确认,序列号"+sequenceNumber);
};
/**
* 添加一个异步确认的监听器
* 1.确认收到消息的回调
* 2.未收到消息的回调
*/
channel.addConfirmListener(ackCallback, null);
long begin = System.currentTimeMillis();
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = "消息" + i;
/**
* channel.getNextPublishSeqNo()获取下一个消息的序列号
* 通过序列号与消息体进行一个关联
* 全部都是未确认的消息体
*/
outstandingConfirms.put(channel.getNextPublishSeqNo(), message);
channel.basicPublish("", queueName, null, message.getBytes());
}
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "个异步确认消息,耗时" + (end - begin) +
"ms");
}
}
如何处理异步未确认消息
把未确认的消息放到一个基于内存的能被发布线程访问的队列, 比如说用 ConcurrentLinkedQueue 这个队列在 confirm callbacks 与发布线程之间进行消息的传递。
单独发布消息
同步等待确认,简单,但吞吐量非常有限
批量发布消息
批量同步等待确认,简单,合理的吞吐量,一旦出现问题但很难推断出是那条 消息出现了问题
异步发布消息
最佳性能和资源使用,在出现错误的情况下可以很好地控制,但是实现起来稍微难些
RabbitMQ 消息传递模型的核心思想是: 生产者生产的消息从不会直接发送到队列。实际上,通常生产 者甚至都不知道这些消息传递传递到了哪些队列中。相反,生产者只能将消息发送到交换机(exchange)
交换机工作的内容

交换机类型
无名交换机
channel.basicPublish("", "hello", null, message.getBytes());
第一个参数是交换机的名称。空字符串表示默认或无名称交换机:消息能路由发送到队列中其实是由 routingKey(bindingkey)绑定 key 指定的,如果它存在的话
创建临时队列的方式
String queueName = channel.queueDeclare().getQueue();

binding
binding是 exchange 和 queue 之间的桥梁,告诉我们 exchange 和哪些队列 进行绑定关系。

Fanout
它是将接收到的所有消息广播到它知道的所有队列中。
系统默认的exchange类型

实战

Logs 和临时队列的绑定关系如下图

消费者
ReceiveLogs01 将接收到的消息打印在控制台
public class ReceiveLogs01 {
// 交换机名称
private static final String EXCHANGE_NAME = "logs";
public static void main(String[] argv) throws Exception {
// 信道
Channel channel = RabbitUtils.getChannel();
// 声明交换机
channel.exchangeDeclare(EXCHANGE_NAME, "fanout");
/**
* 生成一个临时的队列 队列的名称是随机的
* 当消费者断开和该队列的连接时 队列自动删除
*/
String queueName = channel.queueDeclare().getQueue();
// 把该临时队列绑定exchange 其中 routingkey(也称之为 binding key)为空字符串
channel.queueBind(queueName, EXCHANGE_NAME, "");
System.out.println("等待接收消息,把接收到的消息打印在屏幕.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println("控制台打印接收到的消息"+message);
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { });
}
}
ReceiveLogs02 将接收到的消息存储在磁盘
public class ReceiveLogs02 {
// 交换机名称
private static final String EXCHANGE_NAME = "logs";
public static void main(String[] argv) throws Exception {
// 信道
Channel channel = RabbitUtils.getChannel();
// 交换机
channel.exchangeDeclare(EXCHANGE_NAME, "fanout");
/**
* 生成一个临时的队列 队列的名称是随机的
* 当消费者断开和该队列的连接时 队列自动删除
*/
String queueName = channel.queueDeclare().getQueue();
// 把该临时队列绑定 exchange 其中 routingkey(也称之为 binding key)为空字符串
channel.queueBind(queueName, EXCHANGE_NAME, "");
System.out.println("等待接收消息,把接收到的消息写到文件.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
File file = new File("C:\\work\\rabbitmq_info.txt");
FileUtils.writeStringToFile(file,message,"UTF-8");
System.out.println("数据写入文件成功");
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { });
}
}
生产者
EmitLog 发送消息给两个消费者接收
public class EmitLog {
// 交换机名称
private static final String EXCHANGE_NAME = "logs";
public static void main(String[] argv) throws Exception {
try (Channel channel = RabbitUtils.getChannel()) {
/**
* 声明一个 exchange
* 1.exchange 的名称
* 2.exchange 的类型
*/
channel.exchangeDeclare(EXCHANGE_NAME, "fanout");
Scanner sc = new Scanner(System.in);
System.out.println("请输入信息");
while (sc.hasNext()) {
String message = sc.nextLine();
channel.basicPublish(EXCHANGE_NAME, "", null, message.getBytes("UTF-8"));
System.out.println("生产者发出消息" + message);
}
}
}
}
Direct exchange 介绍
direct类型的工作方式是,消息只去到它绑定的 routingKey 队列中去。

在这种绑定情况下,生产者发布消息到 exchange 上,绑定键为 orange 的消息会被发布到队列 Q1。绑定键为 blackgreen 和的消息会被发布到队列 Q2,其他消息类型的消息将被丢弃。
多重绑定

当然如果 exchange 的绑定类型是 direct,但是它绑定的多个队列的 key 如果都相同,在这种情 况下虽然绑定类型是 direct 但是它表现的就和 fanout 有点类似了,就跟广播差不多
实战


public class ReceiveLogsDirect01 {
// 交换机名称
private static final String EXCHANGE_NAME = "direct_logs";
public static void main(String[] argv) throws Exception {
// 信道
Channel channel = RabbitUtils.getChannel();
// 交换机
channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.DIRECT);
String queueName = "disk";
channel.queueDeclare(queueName, false, false, false, null);
channel.queueBind(queueName, EXCHANGE_NAME, "error");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
message="接收绑定键:"+delivery.getEnvelope().getRoutingKey()+",消息:"+message;
File file = new File("C:\\work\\rabbitmq_info.txt");
FileUtils.writeStringToFile(file,message,"UTF-8");
System.out.println("错误日志已经接收");
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> {
});
}
}
public class ReceiveLogsDirect02 {
// 交换机名称
private static final String EXCHANGE_NAME = "direct_logs";
public static void main(String[] argv) throws Exception {
// 信道
Channel channel = RabbitUtils.getChannel();
// 交换机
channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.DIRECT);
String queueName = "console";
channel.queueDeclare(queueName, false, false, false, null);
channel.queueBind(queueName, EXCHANGE_NAME, "info");
channel.queueBind(queueName, EXCHANGE_NAME, "warning");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println(" 接收绑定键 :"+delivery.getEnvelope().getRoutingKey()+", 消
息:"+message);
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> {
});
}
}
public class EmitLogDirect {
// 交换机名称
private static final String EXCHANGE_NAME = "direct_logs";
public static void main(String[] argv) throws Exception {
try (Channel channel = RabbitUtils.getChannel()) {
channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.DIRECT);
// 创建多个 bindingKey
Map<String, String> bindingKeyMap = new HashMap<>();
bindingKeyMap.put("info","普通 info 信息");
bindingKeyMap.put("warning","警告 warning 信息");
bindingKeyMap.put("error","错误 error 信息");
// debug 没有消费这接收这个消息 所有就丢失了
bindingKeyMap.put("debug","调试 debug 信息");
for (Map.Entry<String, String> bindingKeyEntry: bindingKeyMap.entrySet()){
String bindingKey = bindingKeyEntry.getKey();
String message = bindingKeyEntry.getValue();
channel.basicPublish(EXCHANGE_NAME,bindingKey, null,
message.getBytes("UTF-8"));
System.out.println("生产者发出消息:" + message);
}
}
}
}
Topic要求
发送到类型是 topic 交换机的消息的 routing_key 不能随意写,必须满足一定的要求
Topic匹配案例

绑定关系
Q1–>绑定的是 中间带 orange 带 3 个单词的字符串(*.orange.*)
Q2–>绑定的是 最后一个单词是 rabbit 的 3 个单词(..rabbit) 和 第一个单词是 lazy 的多个单词(lazy.#)
数据接收情况
quick.orange.rabbit 被队列 Q1Q2 接收到
lazy.orange.elephant 被队列 Q1Q2 接收到
quick.orange.fox 被队列 Q1 接收到
lazy.brown.fox 被队列 Q2 接收到
lazy.pink.rabbit 虽然满足两个绑定但只被队列 Q2 接收一次
quick.brown.fox 不匹配任何绑定不会被任何队列接收到会被丢弃
quick.orange.male.rabbit 是四个单词不匹配任何绑定会被丢弃
lazy.orange.male.rabbit 是四个单词但匹配 Q2
注意
#,那么这个队列将接收所有数据,就有点像 fanout#和*出现,那么该队列绑定类型就是 direct实战

public class EmitLogTopic {
// 队列名称
private static final String EXCHANGE_NAME = "topic_logs";
public static void main(String[] argv) throws Exception {
try (Channel channel = RabbitUtils.getChannel()) {
channel.exchangeDeclare(EXCHANGE_NAME, "topic");
/**
* Q1-->绑定的是
* 中间带 orange 带 3 个单词的字符串(*.orange.*)
* Q2-->绑定的是
* 最后一个单词是 rabbit 的 3 个单词(*.*.rabbit)
* 第一个单词是 lazy 的多个单词(lazy.#)
*
*/
Map<String, String> bindingKeyMap = new HashMap<>();
bindingKeyMap.put("quick.orange.rabbit","被队列 Q1Q2 接收到");
bindingKeyMap.put("lazy.orange.elephant","被队列 Q1Q2 接收到");
bindingKeyMap.put("quick.orange.fox","被队列 Q1 接收到");
bindingKeyMap.put("lazy.brown.fox","被队列 Q2 接收到");
bindingKeyMap.put("lazy.pink.rabbit","虽然满足两个绑定但只被队列 Q2 接收一次");
bindingKeyMap.put("quick.brown.fox","不匹配任何绑定不会被任何队列接收到会被丢弃");
bindingKeyMap.put("quick.orange.male.rabbit","是四个单词不匹配任何绑定会被丢弃");
bindingKeyMap.put("lazy.orange.male.rabbit","是四个单词但匹配 Q2");
for (Map.Entry<String, String> bindingKeyEntry: bindingKeyMap.entrySet()){
String bindingKey = bindingKeyEntry.getKey();
String message = bindingKeyEntry.getValue();
channel.basicPublish(EXCHANGE_NAME,bindingKey, null,
message.getBytes("UTF-8"));
System.out.println("生产者发出消息" + message);
}
}
}
}
public class ReceiveLogsTopic01 {
private static final String EXCHANGE_NAME = "topic_logs";
public static void main(String[] argv) throws Exception {
Channel channel = RabbitUtils.getChannel();
channel.exchangeDeclare(EXCHANGE_NAME, "topic");
//声明 Q1 队列与绑定关系
String queueName="Q1";
channel.queueDeclare(queueName, false, false, false, null);
channel.queueBind(queueName, EXCHANGE_NAME, "*.orange.*");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println(" 接收队列 :"+queueName+" 绑 定
键:"+delivery.getEnvelope().getRoutingKey()+",消息:"+message);
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> {
});
}
}
public class ReceiveLogsTopic02 {
private static final String EXCHANGE_NAME = "topic_logs";
public static void main(String[] argv) throws Exception {
Channel channel = RabbitUtils.getChannel();
channel.exchangeDeclare(EXCHANGE_NAME, "topic");
// 声明 Q2 队列与绑定关系
String queueName="Q2";
channel.queueDeclare(queueName, false, false, false, null);
channel.queueBind(queueName, EXCHANGE_NAME, "*.*.rabbit");
channel.queueBind(queueName, EXCHANGE_NAME, "lazy.#");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println(" 接收队列 :"+queueName+" 绑 定
键:"+delivery.getEnvelope().getRoutingKey()+",消息:"+message);
};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> {
});
}
}
死信,顾名思义就是无法被消费的消息,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息 进行消费,但某些时候由于特定的原因导致 queue 中的某些消息无法被消费,这样的消息如果没有 后续的处理,就变成了死信,有死信自然就有了死信队列。
应用场景
为了保证订单业务的消息数据不丢失,需要使用到 RabbitMQ 的死信队列机制,当消息消费发生异常时,将消息投入死信队列中,还有比如说: 用户在商城下单成功并点击去支付后在指定时间未支付时自动失效
消息 TTL 过期
队列达到最大长度(队列满,无法再添加数据到 mq 中)
消息被拒绝(basic.reject 或 basic.nack)并且 requeue=false.
架构

生产者
public class Producer {
private static final String NORMAL_EXCHANGE = "normal_exchange";
public static void main(String[] argv) throws Exception {
try (Channel channel = RabbitMqUtils.getChannel()) {
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
// 设置消息的 TTL 时间
AMQP.BasicProperties properties = new
AMQP.BasicProperties().builder().expiration("10000").build();
// 该信息是用作演示队列个数限制
for (int i = 1; i <11 ; i++) {
String message="info"+i;
channel.basicPublish(NORMAL_EXCHANGE, "zhangsan", properties,
message.getBytes());
System.out.println("生产者发送消息:"+message);
}
}
}
}
消费者 C1 (启动之后关闭该消费者 模拟其接收不到消息)
public class Consumer01 {
// 普通交换机名称
private static final String NORMAL_EXCHANGE = "normal_exchange";
// 死信交换机名称
private static final String DEAD_EXCHANGE = "dead_exchange";
public static void main(String[] argv) throws Exception {
Channel channel = RabbitUtils.getChannel();
// 声明死信和普通交换机 类型为 direct
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
channel.exchangeDeclare(DEAD_EXCHANGE, BuiltinExchangeType.DIRECT);
// 声明死信队列
String deadQueue = "dead-queue";
channel.queueDeclare(deadQueue, false, false, false, null);
// 死信队列绑定死信交换机与 routingkey
channel.queueBind(deadQueue, DEAD_EXCHANGE, "lisi");
// 正常队列绑定死信队列信息
Map<String, Object> params = new HashMap<>();
// 正常队列设置死信交换机 参数 key 是固定值
params.put("x-dead-letter-exchange", DEAD_EXCHANGE);
// 正常队列设置死信 routing-key 参数 key 是固定值
params.put("x-dead-letter-routing-key", "lisi");
String normalQueue = "normal-queue";
channel.queueDeclare(normalQueue, false, false, false, params);
channel.queueBind(normalQueue, NORMAL_EXCHANGE, "zhangsan");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println("Consumer01 接收到消息"+message);
};
channel.basicConsume(normalQueue, true, deliverCallback, consumerTag -> {
});
}
}
生产者未发送消息

生产者发送10条消息(此时正常消息队列有10条未消费消息)

时间过去10秒(正常队列里的消息由于没有消费,消息进入死信队列)

消费者 C2 (以上步骤完成后 启动 C2 消费者 它消费死信队列里面的消息)
public class Consumer02 {
private static final String DEAD_EXCHANGE = "dead_exchange";
public static void main(String[] argv) throws Exception {
Channel channel = RabbitUtils.getChannel();
channel.exchangeDeclare(DEAD_EXCHANGE, BuiltinExchangeType.DIRECT);
String deadQueue = "dead-queue";
channel.queueDeclare(deadQueue, false, false, false, null);
channel.queueBind(deadQueue, DEAD_EXCHANGE, "lisi");
System.out.println("等待接收死信队列消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println("Consumer02 接收死信队列的消息" + message);
};
channel.basicConsume(deadQueue, true, deliverCallback, consumerTag -> {
});
}
}


消息生产者代码去掉 TTL 属性
public class Producer {
private static final String NORMAL_EXCHANGE = "normal_exchange";
public static void main(String[] argv) throws Exception {
try (Channel channel = RabbitMqUtils.getChannel()) {
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
// 该信息是用作演示队列个数限制
for (int i = 1; i <11 ; i++) {
String message="info"+i;
channel.basicPublish(NORMAL_EXCHANGE,"zhangsan",null, message.getBytes());
System.out.println("生产者发送消息:"+message);
}
}
}
}
C1 消费者修改以下代码(启动之后关闭该消费者 模拟其接收不到消息)

注意此时需要把原先队列删除 因为参数改变
C2 消费者代码不变(启动 C2 消费者)

消息生产者代码同上生产者一致
C1 消费者代码(启动之后关闭该消费者 模拟其接收不到消息)
public class Consumer01 {
// 普通交换机名称
private static final String NORMAL_EXCHANGE = "normal_exchange";
// 死信交换机名称
private static final String DEAD_EXCHANGE = "dead_exchange";
public static void main(String[] argv) throws Exception {
Channel channel = RabbitUtils.getChannel();
// 声明死信和普通交换机 类型为 direct
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
channel.exchangeDeclare(DEAD_EXCHANGE, BuiltinExchangeType.DIRECT);
// 声明死信队列
String deadQueue = "dead-queue";
channel.queueDeclare(deadQueue, false, false, false, null);
// 死信队列绑定死信交换机与 routingkey
channel.queueBind(deadQueue, DEAD_EXCHANGE, "lisi");
// 正常队列绑定死信队列信息
Map<String, Object> params = new HashMap<>();
// 正常队列设置死信交换机 参数 key 是固定值
params.put("x-dead-letter-exchange", DEAD_EXCHANGE);
// 正常队列设置死信 routing-key 参数 key 是固定值
params.put("x-dead-letter-routing-key", "lisi");
String normalQueue = "normal-queue";
channel.queueDeclare(normalQueue, false, false, false, params);
channel.queueBind(normalQueue, NORMAL_EXCHANGE, "zhangsan");
System.out.println("等待接收消息.....");
DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
if(message.equals("info5")){
System.out.println("Consumer01 接收到消息" + message + "并拒绝签收该消息");
// requeue 设置为 false 代表拒绝重新入队 该队列如果配置了死信交换机将发送到死信队列中
channel.basicReject(delivery.getEnvelope().getDeliveryTag(), false);
}else {
System.out.println("Consumer01 接收到消息"+message);
channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);
}
};
boolean autoAck = false;
channel.basicConsume(normalQueue, autoAck, deliverCallback, consumerTag -> {
});
}
}
生产者发送消息后

C2 消费者代码不变
启动消费者 1 然后再启动消费者 2


延时队列就是用来存放需要在指定时间被处理的元素的队列
使用场景特点
需要在某个事件发生之后或者之前的指定时间点完成某一项任务
使用原因
对于数据量比较大,并且时效性较强的场景
如:“订单十 分钟内未支付则关闭“,短期内未支付的订单数据可能会有很多,活动期间甚至会达到百万甚至千万 级别,对这么庞大的数据量仍旧使用轮询的方式是不可取的,很可能在一秒内无法完成所有订单的检查,同时会给数据库带来很大压力,无法满足业务要求而且性能低下
TTL概念
TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间
TTL单位是毫秒
如果一条消息设置了 TTL 属性或者进入了设置 TTL 属性的队列,那么这条消息如果在 TTL 设置的时间内没有被消费,则会成为"死信"
如果同时配置了队列的 TTL 和消息的 TTL,那么较小的那个值将会被使用
消息设置TTL
针对每条消息设置 TTL

队列设置TTL
创建队列的时候设置队列的“x-message-ttl”属性

注意
引入依赖
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-amqpartifactId>
dependency>
<dependency>
<groupId>org.springframework.amqpgroupId>
<artifactId>spring-rabbit-testartifactId>
<scope>testscope>
dependency>
<dependency>
<groupId>io.springfoxgroupId>
<artifactId>springfox-swagger2artifactId>
<version>2.9.2version>
dependency>
<dependency>
<groupId>io.springfoxgroupId>
<artifactId>springfox-swagger-uiartifactId>
<version>2.9.2version>
dependency>
修改配置文件
spring.rabbitmq.host=xxxx
spring.rabbitmq.port=5672
spring.rabbitmq.username=xxxx
spring.rabbitmq.password=xxxx
添加Swagger配置类
@Configuration
@EnableSwagger2
public class SwaggerConfig {
@Bean
public Docket webApiConfig(){
return new Docket(DocumentationType.SWAGGER_2)
.groupName("webApi")
.apiInfo(webApiInfo())
.select()
.build();
}
private ApiInfo webApiInfo(){
return new ApiInfoBuilder()
.title("rabbitmq 接口文档")
.description("本文档描述了 rabbitmq 微服务接口定义")
.version("1.0")
.contact(new Contact("enjoy6288", "http://atguigu.com",
"1551388580@qq.com"))
.build();
}
}
架构
创建队列 QA 和 QB,队列 TTL 分别设置为 10S 和 40S,然后创建一个交换机 X 和死信交换机 Y,类型都是 direct,创建死信队列 QD

配置类
@Configuration
public class TtlQueueConfig {
// 交换机X
public static final String X_EXCHANGE = "X";
// 队列QA
public static final String QUEUE_A = "QA";
// 队列QB
public static final String QUEUE_B = "QB";
// 死信交换机Y
public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
// 死信队列QD
public static final String DEAD_LETTER_QUEUE = "QD";
// 声明 xExchange
@Bean("xExchange")
public DirectExchange xExchange(){
return new DirectExchange(X_EXCHANGE);
}
// 声明 yExchange
@Bean("yExchange")
public DirectExchange yExchange(){
return new DirectExchange(Y_DEAD_LETTER_EXCHANGE);
}
// 声明队列 QA TTL 为 10s 并绑定到对应的死信交换机Y
@Bean("queueA")
public Queue queueA(){
Map<String, Object> args = new HashMap<>(3);
// 声明当前队列绑定的死信交换机
args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
// 声明当前队列的死信路由 key
args.put("x-dead-letter-routing-key", "YD");
// 声明队列的 TTL
args.put("x-message-ttl", 10000);
return QueueBuilder.durable(QUEUE_A).withArguments(args).build();
}
// 声明队列 A 绑定 X 交换机
@Bean
public Binding queueaBindingX(@Qualifier("queueA") Queue queueA,
@Qualifier("xExchange") DirectExchange xExchange){
return BindingBuilder.bind(queueA).to(xExchange).with("XA");
}
// 声明队列 QB TTL 为 40s 并绑定到对应的死信交换机
@Bean("queueB")
public Queue queueB(){
Map<String, Object> args = new HashMap<>(3);
// 声明当前队列绑定的死信交换机
args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
// 声明当前队列的死信路由 key
args.put("x-dead-letter-routing-key", "YD");
// 声明队列的 TTL
args.put("x-message-ttl", 40000);
return QueueBuilder.durable(QUEUE_B).withArguments(args).build();
}
// 声明队列 QB 绑定 X 交换机
@Bean
public Binding queuebBindingX(@Qualifier("queueB") Queue queue1B,
@Qualifier("xExchange") DirectExchange xExchange){
return BindingBuilder.bind(queue1B).to(xExchange).with("XB");
}
// 声明死信队列 QD
@Bean("queueD")
public Queue queueD(){
return new Queue(DEAD_LETTER_QUEUE);
}
// 声明死信队列 QD 绑定关系
@Bean
public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD,
@Qualifier("yExchange") DirectExchange yExchange){
return BindingBuilder.bind(queueD).to(yExchange).with("YD");
}
}
消息生产者
@Slf4j
@RequestMapping("ttl")
@RestController
public class SendMsgController {
@Autowired
private RabbitTemplate rabbitTemplate;
@GetMapping("sendMsg/{message}")
public void sendMsg(@PathVariable String message) {
log.info("当前时间:{},发送一条信息给两个 TTL 队列:{}", new Date(), message);
rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: "+message);
rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: "+message);
}
}
消息消费者
@Slf4j
@Component
public class DeadLetterQueueConsumer {
@RabbitListener(queues = "QD")
public void receiveD(Message message, Channel channel) throws IOException {
String msg = new String(message.getBody());
log.info("当前时间:{},收到死信队列信息{}", new Date().toString(), msg);
}
}
发起一个请求 http://localhost:8080/ttl/sendMsg/嘻嘻嘻

第一条消息在 10S 后变成了死信消息,然后被消费者消费掉
第二条消息在 40S 之后变成了死信消息, 然后被消费掉
架构
新增了一个队列 QC,该队列不设置 TTL 时间

配置类
@Component
public class MsgTtlQueueConfig {
// 死信交换机Y
public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
// 队列C
public static final String QUEUE_C = "QC";
// 声明队列 C 死信交换机
@Bean("queueC")
public Queue queueB(){
Map<String, Object> args = new HashMap<>(3);
// 声明当前队列绑定的死信交换机
args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
// 声明当前队列的死信路由 key
args.put("x-dead-letter-routing-key", "YD");
// 没有声明 TTL 属性
return QueueBuilder.durable(QUEUE_C).withArguments(args).build();
}
// 声明队列 B 绑定 X 交换机
@Bean
public Binding queuecBindingX(@Qualifier("queueC") Queue queueC,
@Qualifier("xExchange") DirectExchange xExchange){
return BindingBuilder.bind(queueC).to(xExchange).with("XC");
}
}
消息生产者
@GetMapping("sendExpirationMsg/{message}/{ttlTime}")
public void sendMsg(@PathVariable String message,@PathVariable String ttlTime) {
rabbitTemplate.convertAndSend("X", "XC", message, correlationData ->{
correlationData.getMessageProperties().setExpiration(ttlTime);
return correlationData;
});
log.info("当前时间:{},发送一条时长{}毫秒 TTL 信息给队列 C:{}", new Date(),ttlTime, message);
}
发起请求
http://localhost:8080/ttl/sendExpirationMsg/你好 1/20000
http://localhost:8080/ttl/sendExpirationMsg/你好 2/2000

如果使用在消息属性上设置 TTL 的方式,消息可能并不会按时“死亡“,因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列, 如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。
rabbitmq_delayed_message_exchange 插件
安装步骤
下载插件, 放置到 RabbitMQ 的插件目录
进入 RabbitMQ 的安装目录下的 plgins 目录,执行下面命令让该插件生效,然后重启 RabbitMQ
/usr/lib/rabbitmq/lib/rabbitmq_server-3.8.8/plugins
rabbitmq-plugins enable rabbitmq_delayed_message_exchange


架构
新增队列 delayed.queue,一个自定义交换机 delayed.exchange

配置类
在自定义的交换机中,这是一种新的交换类型,该类型消息支持延迟投递机制,消息传递后并不会立即投递到目标队列中,而是存储在 mnesia(一个分布式数据系统)表中,当达到投递时间时,才投递到目标队列中
@Configuration
public class DelayedQueueConfig {
public static final String DELAYED_QUEUE_NAME = "delayed.queue";
public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange";
public static final String DELAYED_ROUTING_KEY = "delayed.routingkey";
@Bean
public Queue delayedQueue() {
return new Queue(DELAYED_QUEUE_NAME);
}
// 自定义交换机 我们在这里定义的是一个延迟交换机
@Bean
public CustomExchange delayedExchange() {
Map<String, Object> args = new HashMap<>();
// 自定义交换机的类型
args.put("x-delayed-type", "direct");
return new CustomExchange(DELAYED_EXCHANGE_NAME, "x-delayed-message", true, false,
args);
}
@Bean
public Binding bindingDelayedQueue(@Qualifier("delayedQueue") Queue queue,
@Qualifier("delayedExchange") CustomExchange
delayedExchange) {
return BindingBuilder.bind(queue).to(delayedExchange).with(DELAYED_ROUTING_KEY).noargs();
}
}
消息生产者
public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange";
public static final String DELAYED_ROUTING_KEY = "delayed.routingkey";
@GetMapping("sendDelayMsg/{message}/{delayTime}")
public void sendMsg(@PathVariable String message,@PathVariable Integer delayTime) {
rabbitTemplate.convertAndSend(DELAYED_EXCHANGE_NAME, DELAYED_ROUTING_KEY, message,
correlationData ->{
correlationData.getMessageProperties().setDelay(delayTime);
return correlationData;
});
log.info(" 当 前 时 间 : {}, 发送一条延迟 {} 毫秒的信息给队列 delayed.queue:{}", new
Date(),delayTime, message);
}
消息消费者
public static final String DELAYED_QUEUE_NAME = "delayed.queue";
@RabbitListener(queues = DELAYED_QUEUE_NAME)
public void receiveDelayedQueue(Message message){
String msg = new String(message.getBody());
log.info("当前时间:{},收到延时队列的消息:{}", new Date().toString(), msg);
}
发起请求:
http://localhost:8080/ttl/sendDelayMsg/come on baby1/20000 http://localhost:8080/ttl/sendDelayMsg/come on baby2/2000

第二个消息被先消费掉
确认机制

配置文件
在配置文件当中需要添加
spring.rabbitmq.publisher-confirm-type=correlated
NONE :禁用发布确认模式,是默认值CORRELATED:发布消息成功到交换器后会触发回调方法SIMPLE :
spring.rabbitmq.host=xxxxx
spring.rabbitmq.port=5672
spring.rabbitmq.username=xxxx
spring.rabbitmq.password=xxx
spring.rabbitmq.publisher-confirm-type=correlated
配置类
@Configuration
public class ConfirmConfig {
public static final String CONFIRM_EXCHANGE_NAME = "confirm.exchange";
public static final String CONFIRM_QUEUE_NAME = "confirm.queue";
// 声明业务 Exchange
@Bean("confirmExchange")
public DirectExchange confirmExchange(){
return new DirectExchange(CONFIRM_EXCHANGE_NAME);
}
// 声明确认队列
@Bean("confirmQueue")
public Queue confirmQueue(){
return QueueBuilder.durable(CONFIRM_QUEUE_NAME).build();
}
// 声明确认队列绑定关系
@Bean
public Binding queueBinding(@Qualifier("confirmQueue") Queue queue,
@Qualifier("confirmExchange") DirectExchange exchange){
return BindingBuilder.bind(queue).to(exchange).with("key1");
}
}
消息生产者
@RestController
@RequestMapping("/confirm")
@Slf4j
public class Producer {
public static final String CONFIRM_EXCHANGE_NAME = "confirm.exchange";
@Autowired
private RabbitTemplate rabbitTemplate;
@Autowired
private MyCallBack myCallBack;
// 依赖注入 rabbitTemplate 之后再设置它的回调对象
@PostConstruct
public void init(){
rabbitTemplate.setConfirmCallback(myCallBack);
}
@GetMapping("sendMessage/{message}")
public void sendMessage(@PathVariable String message){
// 指定消息 id 为 1
CorrelationData correlationData1=new CorrelationData("1");
String routingKey = "key1";
rabbitTemplate.convertAndSend(CONFIRM_EXCHANGE_NAME,routingKey,message+routingKey,correlationData1);
CorrelationData correlationData2=new CorrelationData("2");
routingKey="key2";
rabbitTemplate.convertAndSend(CONFIRM_EXCHANGE_NAME,routingKey,message+routingKey,correlationData2);
log.info("发送消息内容:{}",message);
}
}
回调接口
@Component
@Slf4j
public class MyCallBack implements RabbitTemplate.ConfirmCallback {
/**
* 交换机不管是否收到消息的一个回调方法
* CorrelationData
* 消息相关数据
* ack
* 交换机是否收到消息
*/
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
String id=correlationData!=null?correlationData.getId():"";
if(ack){
log.info("交换机已经收到 id 为:{}的消息",id);
} else {
log.info("交换机还未收到 id 为:{}消息,由于原因:{}",id,cause);
}
}
}
消息消费者
@Component
@Slf4j
public class ConfirmConsumer {
public static final String CONFIRM_QUEUE_NAME = "confirm.queue";
@RabbitListener(queues =CONFIRM_QUEUE_NAME)
public void receiveMsg(Message message){
String msg=new String(message.getBody());
log.info("接受到队列 confirm.queue 消息:{}",msg);
}
}
结果分析

发送两条消息,第一条消息的 RoutingKey 为 “key1”,第二条消息的 RoutingKey 为 “key2”,两条消息都成功被交换机接收,也收到了交换机的确认回调,但消费者只收到了一条消息,因为 第二条消息的 RoutingKey 与队列的 BindingKey 不一致,也没有其它队列能接收这个消息,所有第二条 消息被直接丢弃了
Mandatory 参数
在仅开启生产者确认机制的情况下,交换机接收到消息后,会直接给消息生产者发送确认消息,如果发现该消息不可路由,那么消息会被直接丢弃,此时生产者是不知道消息被丢弃的
但通过设置 mandatory 参数可以在当消息传递过程中不可达目的地时将消息返回给生产者。
消息生产者
@Slf4j
@Component
public class MessageProducer implements RabbitTemplate.ConfirmCallback ,
RabbitTemplate.ReturnCallback {
@Autowired
private RabbitTemplate rabbitTemplate;
// rabbitTemplate 注入之后就设置该值
@PostConstruct
private void init() {
rabbitTemplate.setConfirmCallback(this);
/**
* true:
* 交换机无法将消息进行路由时,会将该消息返回给生产者
* false:
* 如果发现消息无法进行路由,则直接丢弃
*/
rabbitTemplate.setMandatory(true);
//设置回退消息交给谁处理
rabbitTemplate.setReturnCallback(this);
}
@GetMapping("sendMessage")
public void sendMessage(String message){
//让消息绑定一个 id 值
CorrelationData correlationData1 = new CorrelationData(UUID.randomUUID().toString());
rabbitTemplate.convertAndSend("confirm.exchange","key1",message+"key1",correlationData1)
;
log.info("发送消息 id 为:{}内容为{}",correlationData1.getId(),message+"key1");
CorrelationData correlationData2 = new CorrelationData(UUID.randomUUID().toString());
rabbitTemplate.convertAndSend("confirm.exchange","key2",message+"key2",correlationData2);
log.info("发送消息 id 为:{}内容为{}",correlationData2.getId(),message+"key2");
}
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
String id = correlationData != null ? correlationData.getId() : "";
if (ack) {
log.info("交换机收到消息确认成功, id:{}", id);
} else {
log.error("消息 id:{}未成功投递到交换机,原因是:{}", id, cause);
}
}
@Override
public void returnedMessage(Message message, int replyCode, String replyText, String
exchange, String routingKey) {
log.info("消息:{}被服务器退回,退回原因:{}, 交换机是:{}, 路由 key:{}",
new String(message.getBody()),replyText, exchange, routingKey);
}
}
回调接口
@Component
@Slf4j
public class MyCallBack implements
RabbitTemplate.ConfirmCallback,RabbitTemplate.ReturnCallback {
/**
* 交换机不管是否收到消息的一个回调方法
* CorrelationData
* 消息相关数据
* ack
* 交换机是否收到消息
*/
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
String id=correlationData!=null?correlationData.getId():"";
if(ack){
log.info("交换机已经收到 id 为:{}的消息",id);
}else{
log.info("交换机还未收到 id 为:{}消息,由于原因:{}",id,cause);
}
}
// 当消息无法路由的时候的回调方法
@Override
public void returnedMessage(Message message, int replyCode, String replyText, String
exchange, String routingKey) {
log.error(" 消 息 {}, 被交换机 {} 退回,退回原因 :{}, 路 由 key:{}",new
String(message.getBody()),exchange,replyText,routingKey);
}
}

在RabbitMQ中,我们并不知道该如何处理这些无法路由的消息,最多打个日志,然后触发报警,再来手动处理。而通过日志来处理这些无法路由的消息很不优雅,特别是所在的服务器有多台机器的时候。所以这里就可以使用备份交换机来把这些无法路由的消息全部放到备份交换机的备份队列里面。
架构

配置类
@Configuration
public class ConfirmConfig {
public static final String CONFIRM_EXCHANGE_NAME = "confirm.exchange";
public static final String CONFIRM_QUEUE_NAME = "confirm.queue";
public static final String BACKUP_EXCHANGE_NAME = "backup.exchange";
public static final String BACKUP_QUEUE_NAME = "backup.queue";
public static final String WARNING_QUEUE_NAME = "warning.queue";
// 声明确认队列
@Bean("confirmQueue")
public Queue confirmQueue(){
return QueueBuilder.durable(CONFIRM_QUEUE_NAME).build();
}
// 声明确认队列绑定关系
@Bean
public Binding queueBinding(@Qualifier("confirmQueue") Queue queue,
@Qualifier("confirmExchange") DirectExchange exchange){
return BindingBuilder.bind(queue).to(exchange).with("key1");
}
// 声明备份 Exchange
@Bean("backupExchange")
public FanoutExchange backupExchange(){
return new FanoutExchange(BACKUP_EXCHANGE_NAME);
}
// 声明确认 Exchange 交换机的备份交换机
@Bean("confirmExchange")
public DirectExchange confirmExchange(){
ExchangeBuilder exchangeBuilder =
ExchangeBuilder.directExchange(CONFIRM_EXCHANGE_NAME)
.durable(true)
// 设置该交换机的备份交换机
.withArgument("alternate-exchange", BACKUP_EXCHANGE_NAME);
return (DirectExchange)exchangeBuilder.build();
}
// 声明警告队列
@Bean("warningQueue")
public Queue warningQueue(){
return QueueBuilder.durable(WARNING_QUEUE_NAME).build();
}
// 声明报警队列绑定关系
@Bean
public Binding warningBinding(@Qualifier("warningQueue") Queue queue,
@Qualifier("backupExchange") FanoutExchange
backupExchange){
return BindingBuilder.bind(queue).to(backupExchange);
}
// 声明备份队列
@Bean("backQueue")
public Queue backQueue(){
return QueueBuilder.durable(BACKUP_QUEUE_NAME).build();
}
// 声明备份队列绑定关系
@Bean
public Binding backupBinding(@Qualifier("backQueue") Queue queue,
@Qualifier("backupExchange") FanoutExchange backupExchange){
return BindingBuilder.bind(queue).to(backupExchange);
}
}
报警消费者 用独立的消费者来进行监测和报警。
@Component
@Slf4j
public class WarningConsumer {
public static final String WARNING_QUEUE_NAME = "warning.queue";
@RabbitListener(queues = WARNING_QUEUE_NAME)
public void receiveWarningMsg(Message message) {
String msg = new String(message.getBody());
log.error("报警发现不可路由消息:{}", msg);
}
}

概念
用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。
用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常, 此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款, 返回结果成功,用户查询余额发现多扣钱 了,流水记录也变成了两条
消息重复消费
消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断, 故 MQ 未收到确认信息,该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者,但实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。
解决方案
MQ 消费者的幂等性的解决一般使用全局 ID 或者写个唯一标识
比如时间戳或者 UUID 或者订单消费者消费 MQ 中的消息也可利用 MQ 的该 id 来判断,或者可按自己的规则生成一个全局唯一 id,每次消费消息时用该 id 先判断该消息是否已消费过。
消费端的幂等性保障
在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性, 这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。
业界主流的幂等性有两种操作
setnx 命令,天然具有幂等性。从而实现不重复消费添加方式
队列需要设置为优先级队列,消息需要设置消息的优先级,消费者需要等待消息已经发送到队列中才去消费,这样才有机会对消息进行排序
控制台页面添加

队列中代码添加优先级
Map<String, Object> params = new HashMap();
params.put("x-max-priority", 10);
channel.queueDeclare("hello", true, false, false, params);

AMQP.BasicProperties properties = new
AMQP.BasicProperties().builder().priority(5).build()
实现
消息生产者
public class Producer {
private static final String QUEUE_NAME="hello";
public static void main(String[] args) throws Exception {
try (Channel channel = RabbitMqUtils.getChannel();) {
// 给消息赋予一个 priority 属性
AMQP.BasicProperties properties = new
AMQP.BasicProperties().builder().priority(5).build();
for (int i = 1; i <11; i++) {
String message = "info"+i;
if(i==5){
channel.basicPublish("", QUEUE_NAME, properties, message.getBytes());
}else{
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
}
System.out.println("发送消息完成:" + message);
}
}
}
}
消息消费者
public class Consumer {
private static final String QUEUE_NAME="hello";
public static void main(String[] args) throws Exception {
Channel channel = RabbitMqUtils.getChannel();
// 设置队列的最大优先级 最大可以设置到 255 官网推荐 1-10 如果设置太高比较吃内存和 CPU
Map<String, Object> params = new HashMap();
params.put("x-max-priority", 10);
channel.queueDeclare(QUEUE_NAME, true, false, false, params);
System.out.println("消费者启动等待消费......");
DeliverCallback deliverCallback=(consumerTag, delivery)->{
String receivedMessage = new String(delivery.getBody());
System.out.println("接收到消息:"+receivedMessage);
};
channel.basicConsume(QUEUE_NAME,true,deliverCallback,(consumerTag)->{
System.out.println("消费者无法消费消息时调用,如队列被删除");
});
}
}
惰性队列会尽可能的将消息存入磁盘中,而在消费者消费到相应的消息时才会被加载到内存中,它的一个重要的设计目标是支持更多的消息存储。当消费者由于各种各样的原因(比如消费者下线、宕机亦或者是由于维护而关闭等)而致使长时间内不能消费消息造成堆积时,惰性队列就很有必要
惰性队列两种模式: default 和 lazy
默认的为 default 模式,在 3.6.0 之前的版本无需做任何变更
lazy 模式即为惰性队列的模式
如果一个队列同时使用这两种方式设置的话,那么 Policy 的方式具备更高的优先级。 如果要通过声明的方式改变已有队列的模式的话,那么只能先删除队列,然后再重新声明一个新的。
在队列声明的时候可以通过“x-queue-mode”参数来设置队列的模式,取值为“default”和“lazy”
Map<String, Object> args = new HashMap<String, Object>();
args.put("x-queue-mode", "lazy");
channel.queueDeclare("myqueue", false, false, false, args);
内存开销对比
在发送 1 百万条消息,每条消息大概占 1KB 的情况下,普通队列占用内存是 1.2GB,而惰性队列仅仅 占用 1.5MB

使用集群的原因
搭建步骤
1.修改 3 台机器的主机名称
vim /etc/hostnam
2.配置各个节点的 hosts 文件,让各个节点都能互相识别对方
vim /etc/hosts
10.211.55.74 node1
10.211.55.75 node2
10.211.55.76 node3
3.以确保各个节点的 cookie 文件使用的是同一个值
在 node1 上执行远程操作命令
scp /var/lib/rabbitmq/.erlang.cookie root@node2:/var/lib/rabbitmq/.erlang.cookie
scp /var/lib/rabbitmq/.erlang.cookie root@node3:/var/lib/rabbitmq/.erlang.cookie
4.启动 RabbitMQ 服务,顺带启动 Erlang 虚拟机和 RbbitMQ 应用服务(在三台节点上分别执行以下命令)
rabbitmq-server -detached
5.在节点 2 执行
rabbitmqctl stop_app
# (rabbitmqctl stop 会将 Erlang 虚拟机关闭,rabbitmqctl stop_app 只关闭 RabbitMQ 服务)
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node1
rabbitmqctl start_app # (只启动应用服务)
6.在节点 3 执行
rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node2
rabbitmqctl start_app
7.集群状态
rabbitmqctl cluster_status
8.需要重新设置用户
# 创建账号
rabbitmqctl add_user admin 123
# 设置用户角色
rabbitmqctl set_user_tags admin administrator
# 设置用户权限
rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*"
9.解除集群节点(node2 和 node3 机器分别执行)
rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl start_app
rabbitmqctl cluster_status
rabbitmqctl forget_cluster_node rabbit@node2 # (node1 机器上执行)
使用镜像的原因
如果 RabbitMQ 集群中只有一个 Broker 节点,那么该节点的失效将导致整体服务的临时性不可用,并 且也可能会导致消息的丢失
可以将所有消息都设置为持久化,并且对应队列的durable属性也设置为true, 但是这样仍然无法避免由于缓存导致的问题:因为消息在发送之后和被写入磁盘井执行刷盘动作之间存在 一个短暂却会产生问题的时间窗。通过 publisherconfirm 机制能够确保客户端知道哪些消息己经存入磁盘, 尽管如此,一般不希望遇到因单点故障导致的服务不可用。
引入镜像队列(Mirror Queue)的机制,可以将队列镜像到集群中的其他 Broker 节点之上,如果集群中 的一个节点失效,队列能自动地切换到镜像中的另一个节点上以保证服务的可用性。
搭建步骤
1.启动三台集群节点
2.随便找一个节点添加 policy

3.在 node1 上创建一个队列发送一条消息,队列存在镜像队列

4.停掉 node1 之后发现 node2 成为镜像队列

5.就算整个集群只剩下一台机器了 依然能消费队列里面的消息
说明队列里面的消息被镜像队列传递到相应机器里面了
整体架构图

Haproxy 实现负载均衡
HAProxy 提供高可用性、负载均衡及基于 TCPHTTP 应用的代理,支持虚拟主机,它是免费、快速并 且可靠的一种解决方案,
HAProxy 实现了一种事件驱动、单一进程模型,此模型支持非常大的井发连接数。
搭建步骤
1.下载 haproxy(在 node1 和 node2)
yum -y install haproxy
2.修改 node1 和 node2 的 haproxy.cfg
vim /etc/haproxy/haproxy.cfg
需要修改红色 IP 为当前机器 IP

3.在两台节点启动 haproxy
haproxy -f /etc/haproxy/haproxy.cfg
ps -ef | grep haproxy
4.访问地址
访问地址 http://10.211.55.71:8888/stats
Keepalived 实现双机(主备)热备
如果前面配置的 HAProxy 主机突然宕机或者网卡失效,那么虽然 RbbitMQ 集群没有任何故障但是对于外界的客户端来说所有的连接都会被断开,结果将是灾难性的
为了确保负载均衡服务的可靠性,引入 Keepalived 它能够通过自身健康检查、资源接管功能做高可用(双机热备),实现故障转移.
搭建步骤
1.下载 keepalived
yum -y install keepalived
2.节点 node1 配置文件
vim /etc/keepalived/keepalived.conf
3.节点 node2 配置文件
需要修改 global_defs 的 router_id,如:nodeB
其次要修改 vrrp_instance_VI 中 state 为"BACKUP";
最后要将 priority 设置为小于 100 的值
4.添加 haproxy_chk.sh
(为了防止 HAProxy 服务挂掉之后 Keepalived 还在正常工作而没有切换到 Backup 上,所以 这里需要编写一个脚本来检测 HAProxy 务的状态,当 HAProxy 服务挂掉之后该脚本会自动重启 HAProxy 的服务,如果不成功则关闭 Keepalived 服务,这样便可以切换到 Backup 继续工作)
vim /etc/keepalived/haproxy_chk.sh # (可以直接上传文件)
# 修改权限
chmod 777 /etc/keepalived/haproxy_chk.sh
5.启动 keepalive 命令(node1 和 node2 启动)
systemctl start keepalived
6.观察 Keepalived 的日志
tail -f /var/log/messages -n 200
7.观察最新添加的 vip
ip add show
8.node1 模拟 keepalived 关闭状态
systemctl stop keepalived
9.使用 vip 地址来访问 rabbitmq 集群
需求
(broker 北京),(broker 深圳)彼此之间相距甚远,网络延迟是一个不得不面对的问题。有一个在北京 的业务(Client 北京) 需要连接(broker 北京),向其中的交换器 exchangeA 发送消息,此时的网络延迟很小, (Client 北京)可以迅速将消息发送至 exchangeA 中,就算在开启了 publisherconfirm 机制或者事务机制的情况下,也可以迅速收到确认信息
此时又有个在深圳的业务(Client 深圳)需要向 exchangeA 发送消息, 那么(Client 深圳) (broker 北京)之间有很大的网络延迟,(Client 深圳) 将发送消息至 exchangeA 会经历一 定的延迟,尤其是在开启了 publisherconfirm 机制或者事务机制的情况下,(Client 深圳) 会等待很长的延迟时间来接收(broker 北京)的确认信息,进而必然造成这条发送线程的性能降低,甚至造成一定程度上的阻塞。
使用 Federation 插件就可以很好地解决这个问题.

搭建步骤
1.需要保证每台节点单独运行
2.在每台机器上开启 federation 相关插件
rabbitmq-plugins enable rabbitmq_federation
rabbitmq-plugins enable rabbitmq_federation_management

3.原理图(先运行 consumer 在 node2 创建 fed_exchange)

4.在 downstream(node2)配置 upstream(node1)

4.添加 policy

5.成功的前提

联邦队列可以在多个 Broker 节点(或者集群)之间为单个队列提供均衡负载的功能。一个联邦队列可以连接一个或者多个上游队列(upstream queue),并从这些上游队列中获取消息以满足本地消费者消费消息的需求
搭建步骤
1.原理图

2.添加 upstream(同上)
3.添加 policy

Shovel 够可靠、持续地从一个 Broker 中的队列(作为源端,即 source)拉取数据并转发至另一个 Broker 中的交换器(作为目的端,即 destination)。作为源端的队列和作 为目的端的交换器可以同时位于同一个 Broker,也可以位于不同的 Broker 上
搭建步骤
1.开启插件(需要的机器都开启)
rabbitmq-plugins enable rabbitmq_shovel
rabbitmq-plugins enable rabbitmq_shovel_management

2.原理图(在源头发送的消息直接回进入到目的地队列

3.添加 shovel 源和目的地
