• 【无标题】


    帧内编码入口函数:

    从 Analysis::compressCTU 入口函数工具 slice 类型判断是 I 还是 BP,如果是BP则执行帧内编码函数 Analysis::compressIntraCTU:
    /*
        压缩分析CTU
        过程:
        1.为当前CTU加载QP/熵编码上下文
        2.是否有编码信息输入来方便快速最优模式分析
            ·bCTUInfo,加载depth/content/prevCtuInfoChange
            ·analysisMultiPassRefine,加载之前pass计算分析得到的mv/mvpIdx/ref/modes/depth
            ·analysisLoad && 非Islice,加载load数据中的Ref/Depth/Modes/PartSize/MergeFlag
        3.对CTU压缩编码
             ·Islice    执行帧内预测压缩编码
                1.若analysisLoad,则加载cuDepth/partSize/lumaIntraDir/chromaIntraDir
                2.compressIntraCU
            ·P/Bslice    执行帧间预测压缩编码
                1.判断是否有可用的编码分析数据
                2.若有可用编码分析数据则拷贝这些可用数据:cuDepth/predMode/partSize/skipFlag/lumaIntraDir/chromaIntraDir
                3.进行实际的P/Bslice编码
                    ·若开启bIntraRefresh,且CTU处于Pir范围内,则对CTU进行compressIntraCU编码
                    ·若rdlevel = 0
                        1.将原始YUV数据拷贝到recon图像中
                        2.进行compressInterCU_rd0_4压缩编码
                        3.进行encodeResidue编码残差
                    ·若analysisLoad
                        1.拷贝cuDepth/predMode/partSize/lumaIntraDir/chromaIntraDir
                        2.进行qprdRefine优化rd qp
                        3.返回CTU的bestMode
                    ·若开启bDistributeModeAnalysis,且rdlevel>=2,则进行compressInterCU_dist分布式压缩编码
                    ·若rdlevel 0~4,则进行compressInterCU_rd0_4压缩编码
                    ·若rdlevel 5~6,则进行compressInterCU_rd5_6压缩编码
        4.若使用 rd优化 或 CU级qp优化,则进行qprdRefine优化
        5.若csvlog等级>=2,则collectPUStatistics进行PU信息统计
        6.返回CTU的bestMode
    */
    x265的帧内预测,首先需要进行模式选择,也就是 RDO (率失真优化)选择过程:
    帧内预测流程:
    (1)首先,对每一个PU进行粗选择RMD,即根据SATD率失真代价模型从35种帧内预测模式中粗选出N种候选预测模式,N的取值由PU尺寸决定,PU尺寸64×64~4×4从大到小对应的候选模式数N分别为3,3,3,8,8;
    (2)然后将从左边块和上边块中提取的最优预测模式组成的最有可能模式(Most Probable Mode, MPM)和N种粗选后的候选模式加入到候选列表中;
    (3)最后,计算并比较候选列表中的每一种模式的率失真代价值,从中选出最优的帧内预测模式.
    Analysis::compressIntraCU
    输入64*64的CU,四叉树递归划分更小CU,然后对每个CU进行帧内预测RDO率失真优化模式选择。函数返回当前划分的 rd cost
    Search::checkIntra() 
    调用estIntraPredQT和estIntraPredChromaQT分别选出当前CU的亮度最优预测模式和色度最优预测模式,然后计算编码当前CU所使用的的RD Cost。
    Search::estIntraPredQT()
    选出当前CU的亮度最优预测模式, H.265的亮度预测模式包括DC、Planar和33种角度模式共35种预测模式
    Search::estIntraPredChromaQT()
    选出当前CU的色度最优预测模式
    Search::codeIntraLumaQT()
    对CU递归划分TU(编码单元),使用上层传进来的预测模式对TU进行预测,然后进行变换、量化、反变换、反量化、重建,计算RD Cost

    【源码】Analysis::compressIntraCU

    x265帧内块划分RDO过程:
    帧内预测的第一步是  Analysis::compressIntraCU 划分PU,CU、PU、TU的区别如下:
    CU:编码单元,H.265中帧内的CU最大为64x64,最小为8x8,并且只能是方形块
    PU:预测单元,H.265种PU有两种类型:
    SIZE_2Nx2N:进行预测时候不需要对当前CU进一步划分,PU尺寸等于CU尺寸
    SIZE_NxN:只有8x8的CU具有该划分方式,即进行预测时将当前CU使用四叉树递归划分为4个4x4的子PU
    TU:变换单元,支持32x32、16x16、8x8、4x4
    PU和TU的关系:由于PU和TU都是直接由CU划分得到,因此二者大小没有确定的关系,一个PU可以包含多个包含多个TU,一个TU可以跨越多个PU,但是二者大小都必须小于CU。对于帧内编码,由于相邻PU之间存在依赖关系,即当前PU进行预测时候需要参考相邻已经编码的PU,因此一个PU可以包含多个TU,但是一个TU最多只能对应一个PU。x265只支持四叉树划分
      
    代码划分流程:
    (1)从根64x64CU开始进行划分,通过四叉树划分获得第一个32x32的CU
    (2)对于第一个32x32的CU,先通过调用checkIntra函数进行帧内预测模式的RDO,并计算RD Cost;将该32x32的CU进行四叉树划分获得4个16x16的CU
    (3)对于第一个16x16的CU,先通过调用checkIntra函数进行帧内预测模式的RDO,并计算RD Cost;将该16x16的CU进行四叉树划分获得4个8x8的CU
    (4)对于四个8x8的CU,分别对每一个8x8CU调用checkIntra函数计算RD Cost
    (5)返回到第三步中的16x16的CU,将其不进行四叉树划分所得的RD Cost和第四步得到的RD Cost进行比较,两者的比较结果决定了该16x16的CU是否划分为4个8x8的CU
    (6)用同样的方法,比较第二个、第三个和第四个的16x16的CU,并将这四个16x16CU的最优的RD Cost累加起来
    (7)返回到第二步中的32x32的CU,比较第一个32x32CU的RD Cost和第6中获得的四个16x16RD Cost累加和,从而决定对该32x32CU进行四叉树划分
    (8)同理,计算第二个、第三个和第四个32x32CU的最优RD Cost,决定是否对其进行四叉树划分。
    1. /*
    2. * 输入64*64的CU,然后递归划分更小CU,并对每一个CU进行帧内预测来判断最递归划分深度尺寸以及帧内预测模式选择,函数返回当前划分尺寸和深度的 rd cost
    3. * */
    4. uint64_t Analysis::compressIntraCU(const CUData& parentCTU, const CUGeom& cuGeom, int32_t qp)
    5. {
    6.     std::cout << "encoder/analysis.cpp Analysis::compressIntraCU" << std::endl;
    7.     uint32_t depth = cuGeom.depth;// CU结构深度,0~3
    8.     ModeDepth& md = m_modeDepth[depth];
    9.     md.bestMode = NULL;
    10.     bool mightSplit = !(cuGeom.flags & CUGeom::LEAF);// true表示叶子结点,还需要继续分裂
    11.     bool mightNotSplit = !(cuGeom.flags & CUGeom::SPLIT_MANDATORY);
    12.     bool bAlreadyDecided = m_param->intraRefine != 4 && parentCTU.m_lumaIntraDir[cuGeom.absPartIdx] != (uint8_t)ALL_IDX && !(m_param->bAnalysisType == HEVC_INFO);
    13.     bool bDecidedDepth = m_param->intraRefine != 4 && parentCTU.m_cuDepth[cuGeom.absPartIdx] == depth;
    14.     int split = 0;
    15.     if (m_param->intraRefine && m_param->intraRefine != 4)  //帧内精细化
    16.     {
    17.         split = m_param->scaleFactor && bDecidedDepth && (!mightNotSplit ||
    18.             ((cuGeom.log2CUSize == (uint32_t)(g_log2Size[m_param->minCUSize] + 1))));
    19.         if (cuGeom.log2CUSize == (uint32_t)(g_log2Size[m_param->minCUSize]) && !bDecidedDepth)
    20.             bAlreadyDecided = false;
    21.     }
    22.     if (bAlreadyDecided)    //已经决策出确定的帧内预测模式
    23.     {
    24.         if (bDecidedDepth && mightNotSplit)     //已经决策出确定的划分深度
    25.         {
    26.             Mode& mode = md.pred[0];
    27.             md.bestMode = &mode;
    28.             mode.cu.initSubCU(parentCTU, cuGeom, qp);
    29.             bool reuseModes = !((m_param->intraRefine == 3) ||
    30.                                 (m_param->intraRefine == 2 && parentCTU.m_lumaIntraDir[cuGeom.absPartIdx] > DC_IDX));
    31.             if (reuseModes)
    32.             {
    33.                 memcpy(mode.cu.m_lumaIntraDir, parentCTU.m_lumaIntraDir + cuGeom.absPartIdx, cuGeom.numPartitions);
    34.                 memcpy(mode.cu.m_chromaIntraDir, parentCTU.m_chromaIntraDir + cuGeom.absPartIdx, cuGeom.numPartitions);
    35.             }
    36.             checkIntra(mode, cuGeom, (PartSize)parentCTU.m_partSize[cuGeom.absPartIdx]);
    37.             if (m_bTryLossless)
    38.                 tryLossless(cuGeom);
    39.             if (mightSplit)
    40.                 addSplitFlagCost(*md.bestMode, cuGeom.depth);
    41.         }
    42.     }
    43.         // 如果当前尺寸不等于最大CU尺寸(64x64)且可能不会继续划分,则开始选择预测模式 RDO
    44.     else if (cuGeom.log2CUSize != MAX_LOG2_CU_SIZE && mightNotSplit)
    45.     {
    46.         md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
    47.         checkIntra(md.pred[PRED_INTRA], cuGeom, SIZE_2Nx2N);
    48.         checkBestMode(md.pred[PRED_INTRA], depth);//判断是否是最佳模式
    49.         // 如果当前CU尺寸为8x8,则计算将CU划分为44x4 PU进行预测所需的RD Cost
    50.         if (cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3)
    51.         {
    52.             md.pred[PRED_INTRA_NxN].cu.initSubCU(parentCTU, cuGeom, qp);
    53.             // 帧内预测模式选择 RDO 会计算 rd-cost等等
    54.             // 在递归到最后划分到CU最小级别进来后会执行计算
    55.             checkIntra(md.pred[PRED_INTRA_NxN], cuGeom, SIZE_NxN);
    56.             checkBestMode(md.pred[PRED_INTRA_NxN], depth);//判断是否是最佳模式
    57.         }
    58.         if (m_bTryLossless)
    59.             tryLossless(cuGeom);
    60.         if (mightSplit)
    61.             addSplitFlagCost(*md.bestMode, cuGeom.depth);
    62.     }
    63.     // 达到设定的划分深度则停止划分
    64.     mightSplit &= !(bAlreadyDecided && bDecidedDepth) || split;
    65.     if (mightSplit)
    66.     {
    67.         // 如果还能继续划分则继续递归
    68.         Mode* splitPred = &md.pred[PRED_SPLIT];
    69.         splitPred->initCosts();
    70.         CUData* splitCU = &splitPred->cu;
    71.         splitCU->initSubCU(parentCTU, cuGeom, qp);
    72.         uint32_t nextDepth = depth + 1;
    73.         ModeDepth& nd = m_modeDepth[nextDepth];
    74.         invalidateContexts(nextDepth);
    75.         Entropy* nextContext = &m_rqt[depth].cur;
    76.         int32_t nextQP = qp;
    77.         uint64_t curCost = 0;
    78.         int skipSplitCheck = 0;
    79.         // 对已经递归的每个子CU进行相同的操作(计算rd-cost)
    80.         for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
    81.         {
    82.             const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
    83.             if (childGeom.flags & CUGeom::PRESENT)
    84.             {
    85.                 m_modeDepth[0].fencYuv.copyPartToYuv(nd.fencYuv, childGeom.absPartIdx);
    86.                 m_rqt[nextDepth].cur.load(*nextContext);
    87.                 if (m_slice->m_pps->bUseDQP && nextDepth <= m_slice->m_pps->maxCuDQPDepth)
    88.                     nextQP = setLambdaFromQP(parentCTU, calculateQpforCuSize(parentCTU, childGeom));
    89.                 if (m_param->bEnableSplitRdSkip)
    90.                 {
    91.                     curCost += compressIntraCU(parentCTU, childGeom, nextQP);
    92.                     // 如果划分的深度计算 rd cost 大于总的 rd cost 说明再继续划分失真度还是差不多则不在进行递归划分了
    93.                     if (m_modeDepth[depth].bestMode && curCost > m_modeDepth[depth].bestMode->rdCost)
    94.                     {
    95.                         skipSplitCheck = 1;
    96.                         break;
    97.                     }
    98.                 }
    99.                 else
    100.                     compressIntraCU(parentCTU, childGeom, nextQP);
    101.                 // 前面已经计算了当前深度的CU划分的总rd-cost、量化、编码数据,保存
    102.                 splitCU->copyPartFrom(nd.bestMode->cu, childGeom, subPartIdx);
    103.                 splitPred->addSubCosts(*nd.bestMode);
    104.                 nd.bestMode->reconYuv.copyToPartYuv(splitPred->reconYuv, childGeom.numPartitions * subPartIdx);
    105.                 nextContext = &nd.bestMode->contexts;
    106.             }
    107.             else
    108.             {
    109.                 /* record the depth of this non-present sub-CU */
    110.                 splitCU->setEmptyPart(childGeom, subPartIdx);
    111.                 /* Set depth of non-present CU to 0 to ensure that correct CU is fetched as reference to code deltaQP */
    112.                 if (bAlreadyDecided)
    113.                     memset(parentCTU.m_cuDepth + childGeom.absPartIdx, 0, childGeom.numPartitions);
    114.             }
    115.         }
    116.         if (!skipSplitCheck)
    117.         {
    118.             nextContext->store(splitPred->contexts);
    119.             if (mightNotSplit)
    120.                 addSplitFlagCost(*splitPred, cuGeom.depth);
    121.             else
    122.                 updateModeCost(*splitPred);
    123.             checkDQPForSplitPred(*splitPred, cuGeom);
    124.             checkBestMode(*splitPred, depth);
    125.         }
    126.     }
    127.     // rd5 rd6 开启率失真精细化
    128.     if (m_param->bEnableRdRefine && depth <= m_slice->m_pps->maxCuDQPDepth)
    129.     {
    130.         int cuIdx = (cuGeom.childOffset - 1) / 3;
    131.         cacheCost[cuIdx] = md.bestMode->rdCost;
    132.     }
    133.     if ((m_limitTU & X265_TU_LIMIT_NEIGH) && cuGeom.log2CUSize >= 4)
    134.     {
    135.         CUData* ctu = md.bestMode->cu.m_encData->getPicCTU(parentCTU.m_cuAddr);
    136.         int8_t maxTUDepth = -1;
    137.         for (uint32_t i = 0; i < cuGeom.numPartitions; i++)
    138.             maxTUDepth = X265_MAX(maxTUDepth, md.bestMode->cu.m_tuDepth[i]);
    139.         ctu->m_refTuDepth[cuGeom.geomRecurId] = maxTUDepth;
    140.     }
    141.     /* Copy best data to encData CTU and recon */
    142.     md.bestMode->cu.copyToPic(depth);
    143.     if (md.bestMode != &md.pred[PRED_SPLIT])
    144.         md.bestMode->reconYuv.copyToPicYuv(*m_frame->m_reconPic, parentCTU.m_cuAddr, cuGeom.absPartIdx);
    145.     // 返回当前CU的深度划分情况下,帧内预测最优的模式,返回最优模式的 rd-cost
    146.     return md.bestMode->rdCost;
    147. }

    【源码】Search::checkIntra():

    帧内预测模式选择RDO:
    CheckIntra主要是调 用estIntraPredQT和estIntraPredChromaQT分别选出当前CU的亮度最优预测模式和色度最优预测模式,然后计算编码当前CU所使用的的RD Cost。
    代码流程:
    (1)getIntraTUQtDepthRange:根据参数设置的TU的最大最小size,以及设置的intraTU大小以及当前CU大小设置TU范围
    (2)estIntraPredQT:计算当前大小的CU的最佳模式的distortion(SSE)        
        对1或者4个PU(8x8的intraCU可以有4个PU)
        算出35种模式的sadcost,记录最小的sadcost,计算每种模式下预测值得残差信号,Hamada变换后计算satd。
        以最小sadcost的1.25倍为限,选出最多u32MaxRdCandCount = 2 + m_pParam->rdLevel + ((u32Depth + u32InitTuDepth) >> 1)种cand模式
        如果只有一个候选模式,则此模式为最佳模式
        如果有多个候选模式,对每个候选模式调用codeIntraLumaQT编码(会记录rdcost),记录最小的rdcost以及对应的bestMode
        当前CU设置成bestMode,再次调用codeIntraLumaQT编码,
        调用extractIntraResultQT将每个TU的coeff和recYUV复制出来
        返回distortion(SSE)
        调用estimateCuBitNum估计出最优模式下的bits
        调用calcEnergyAndRdCost算出rdcost
    1. /*
    2. * 对传入的CU在当前划分深度和尺寸下计算每个模式的 rd-cost
    3. * */
    4. void Search::checkIntra(Mode& intraMode, const CUGeom& cuGeom, PartSize partSize)
    5. {
    6.     std::cout << "encoder/serach.cpp Search::checkIntra()" << std::endl;
    7.     CUData& cu = intraMode.cu;
    8.     cu.setPartSizeSubParts(partSize);//设置partSize,也就是划分的深度
    9.     cu.setPredModeSubParts(MODE_INTRA);//设置predMode为intra
    10.     uint32_t tuDepthRange[2];//得到TU的深度范围
    11.     cu.getIntraTUQtDepthRange(tuDepthRange, 0);
    12.     intraMode.initCosts();//初始化cost
    13.     //计算当前CU最优帧内预测模式(函数返回亮度失真)
    14.     intraMode.lumaDistortion += estIntraPredQT(intraMode, cuGeom, tuDepthRange);
    15.     //I400就是没有色度分量,如果有色度分量也需要最优预测模式计算
    16.     if (m_csp != X265_CSP_I400)
    17.     {
    18.         //计算当前CU最优帧内预测模式(函数返回色度失真)
    19.         intraMode.chromaDistortion += estIntraPredChromaQT(intraMode, cuGeom);
    20.         intraMode.distortion += intraMode.lumaDistortion + intraMode.chromaDistortion;
    21.     }
    22.     else
    23.         intraMode.distortion += intraMode.lumaDistortion;
    24.     cu.m_distortion[0] = intraMode.distortion;
    25.     m_entropyCoder.resetBits();
    26.     if (m_slice->m_pps->bTransquantBypassEnabled)
    27.         m_entropyCoder.codeCUTransquantBypassFlag(cu.m_tqBypass[0]);
    28.     int skipFlagBits = 0;
    29.     if (!m_slice->isIntra())
    30.     {
    31.         m_entropyCoder.codeSkipFlag(cu, 0);
    32.         skipFlagBits = m_entropyCoder.getNumberOfWrittenBits();
    33.         m_entropyCoder.codePredMode(cu.m_predMode[0]);
    34.     }
    35.     //
    36.     m_entropyCoder.codePartSize(cu, 0, cuGeom.depth);
    37.     m_entropyCoder.codePredInfo(cu, 0);
    38.     intraMode.mvBits = m_entropyCoder.getNumberOfWrittenBits() - skipFlagBits;
    39.     bool bCodeDQP = m_slice->m_pps->bUseDQP;
    40.     // 编码残差系数
    41.     m_entropyCoder.codeCoeff(cu, 0, bCodeDQP, tuDepthRange);
    42.     // 保存熵编码上下文
    43.     m_entropyCoder.store(intraMode.contexts);
    44.     // 得到编码当前CU的总bits开销
    45.     intraMode.totalBits = m_entropyCoder.getNumberOfWrittenBits();
    46.     // 得到编码当前CU系数的总bits开销
    47.     intraMode.coeffBits = intraMode.totalBits - intraMode.mvBits - skipFlagBits;
    48.     const Yuv* fencYuv = intraMode.fencYuv;
    49.     // 技术 energy
    50.     if (m_rdCost.m_psyRd)
    51.         intraMode.psyEnergy = m_rdCost.psyCost(cuGeom.log2CUSize - 2, fencYuv->m_buf[0], fencYuv->m_size, intraMode.reconYuv.m_buf[0], intraMode.reconYuv.m_size);
    52.     else if(m_rdCost.m_ssimRd)
    53.         intraMode.ssimEnergy = m_quant.ssimDistortion(cu, fencYuv->m_buf[0], fencYuv->m_size, intraMode.reconYuv.m_buf[0], intraMode.reconYuv.m_size, cuGeom.log2CUSize, TEXT_LUMA, 0);
    54.     intraMode.resEnergy = primitives.cu[cuGeom.log2CUSize - 2].sse_pp(intraMode.fencYuv->m_buf[0], intraMode.fencYuv->m_size, intraMode.predYuv.m_buf[0], intraMode.predYuv.m_size);
    55.     // 计算残差 intraMode 的 rdcost = distortion(fenc,recon)+lambda*all_bits
    56.     updateModeCost(intraMode);
    57.     checkDQP(intraMode, cuGeom);
    58. }


    【源码】Search::estIntraPredQT()

    亮度最优模式RDO选择:
    Search::checkIntra() 调用 Search::estIntraPredQT()。estIntraPredQT函数主要是进行亮度预测模式的RDO选择,H.265的亮度预测模式包括DC、Planar和33种角度模式共35种预测模式
    主要流程如下:
    (1) 比较35种预测模式的SATD cost,选出N种RDO候选模式,其中N值与rdlevel和PU尺寸有关。
    (2)针对N种RDO候选模式采用简单的RDO(无TU划分)。
    (3)针对最优mode采用RD O(允许TU划分)。
    粗粒度率失真计算:
    rdcost = satd(fenc, pred) + lambda * IPM_bits,其中satd在一定程度上表示了频域的能量,弥补了IPM_bits没有计算残差系数等bits开销的不足,该方法计算/时间开销小,因为没有进行变换/量化/反量化/反变换等过程;但是其结果只具有一定代表性,其计算的最优可能并不一定是严格意义上的最优,而只是可能较优。
    细粒度率失真计算:
    rdcost = sse(fenc, recon) + lambda * all_bits,该方法严格计算了原始帧和重建帧之间的distortion,并对执行了整个编码流程,包括变换/量化/反量化/反变换等等,是真正意义上的拉格朗日码控计算,其计算的最优就是严格意义上的最优,但是计算成本大。
    X265在分析最优帧内预测方向中,采用了两种结合的方式,先使用粗粒度计算方式得到一些可能的最优帧内预测方向备选集,然后在这些备选集中用细粒度计算方式得到最后严格意义上的最优帧内预测方向
    /*
        为当前CU中各个PU分析最优的帧内预测方向,并返回整个CU的distortion
        过程:
            1.获取depth、initTuDepth、TUsize、PU个数等信息
            2.检查是否TransformSkip
            3.遍历当前CU的所有PU
                1.对当前PU分析其最优帧内预测方向
                    ·若指定了帧内预测方向,则直接将其定为最优帧内预测方向
                    ·否则,进行最优帧内预测方向选择
                        1.获取相邻PU参考像素可用信息
                        2.对相邻PU参考像素信息进行填充并平滑滤波
                        3.加载3个mpms,并得到未命中mpms时的bits开销
                         4.进行DC帧内预测方向计算
                            1.进行DC帧内预测
                            2.得到编码DC帧内预测方向的mode_bits
                            3.计算distortion = sa8d(fenc, pred)
                            4.计算存储cost[DC] = distortion + lambda * mode_bits,并将其设置为最优开销bcost
                         5.进行PLANAR帧内预测方向计算
                            1.进行PLANAR帧内预测,TUsize在8~32内用平滑滤波后的参考像素,否则使用未滤波的像素
                            2.得到编码PLANAR帧内预测方向的mode_bits
                            3.计算distortion = sa8d(fenc, pred)
                            4.计算存储cost[PLANAR]= distortion + lambda * mode_bits,并基于cost更新bcost
                         6.进行angle2~34帧内预测方向计算
                            ·若intra_pred_allangs函数定义,则
                                1.转置fenc矩阵为fenc^
                                2.进行intra_pred_allangs函数计算,输出angle2~34一共33种预测方向的预测像素
                                3.遍历angle2~34
                                    1.得到编码当前angle下帧内预测方向的mode_bits
                                    2.计算distortion
                                        ·若angle在2~18中,即从水平向右的所有帧内预测方向,则distortion = satd(fenc^, pred)
                                        ·否则,即angle在19~34中,也就是垂直向下的那些帧内预测方向,则distortion = satd(fenc, pred)
                                    3.计算cost[angle] = distortion + lambda * mode_bits
                            ·若没有intra_pred_allangs函数定义,则遍历angle2~34帧内预测方向
                                1.得到编码当前angle下帧内预测方向的mode_bits
                                2.判断是否使用平滑滤波后的参考像素
                                3.计算distortion = sa8d(fenc, pred)
                                4.计算cost[angle] = distortion + lambda * mode_bits
                        7.选取最多maxCandCount个cost在1.25倍bcost内的帧内预测方向作为帧内预测方向备选集cand
                        8.遍历所有cand,在cand中寻找严格意义上的最优
                            1.加载熵编码上下文,并设置好帧内预测方向
                            2.针对指定的帧内预测方向,严格基于rdcost = sse(fenc, recon) + lambda * all_bits,确定最优的TU划分,并得到rdcost、bits、distortion、energy开销
                            3.基于rdcost来更新最优开销bcost以及最优帧内预测方向bmode
                2.设置得到的最优帧内预测方向
                3.载入熵编码上下文
                4.再次调用codeIntraLumaTSkip/codeIntraLumaQT来重新得到其残差系数、reconYUV、以及一些开销
                5.累加当前PU最优预测方向的distortion到totalDistortion中
                6.提取存储保留最优帧内预测方向的残差系数和reconYUV
                7.若当前PU不是当前CU的最后一块PU,则保留reconYUV,为下一PU的帧内预测做参考
                8.若当前CU划分了多个PU,则merge各个PU的cbf
                9.返回totalDistortion
    */
    1. //为当前CU中各个PU分析最优的帧内预测方向,并返回整个CU的distortion
    2. sse_t Search::estIntraPredQT(Mode &intraMode, const CUGeom& cuGeom, const uint32_t depthRange[2])
    3. {
    4.     CUData& cu = intraMode.cu;
    5.     //原始帧、预测帧、重建帧
    6.     const Yuv* fencYuv = intraMode.fencYuv;
    7.     Yuv* predYuv = &intraMode.predYuv;
    8.     Yuv* reconYuv = &intraMode.reconYuv;
    9.     uint32_t depth        = cuGeom.depth;                    //CU深度
    10.     uint32_t initTuDepth  = cu.m_partSize[0] != SIZE_2Nx2N;    //初始TU深度,2Nx2N=>深度0,NxN=>深度1
    11.     uint32_t numPU        = 1 << (2 * initTuDepth);            //PU个数,2Nx2N=>1个,NxN=>4
    12.     uint32_t log2TrSize   = cuGeom.log2CUSize - initTuDepth;//TUsize,单位log(pixel)
    13.     uint32_t tuSize       = 1 << log2TrSize;                //TUsize,单位pixel
    14.     uint32_t qNumParts    = cuGeom.numPartitions >> 2;        
    15.     uint32_t sizeIdx      = log2TrSize - 2;
    16.     uint32_t absPartIdx   = 0;
    17.     sse_t totalDistortion = 0;
    18.     //是否跳过transform
    19.     int checkTransformSkip = m_slice->m_pps->bTransformSkipEnabled && !cu.m_tqBypass[0] && cu.m_partSize[0] != SIZE_2Nx2N;
    20.     // loop over partitions 遍历所有PU
    21.     for (uint32_t puIdx = 0; puIdx < numPU; puIdx++, absPartIdx += qNumParts)
    22.     {
    23.         uint32_t bmode = 0;
    24.         //若指定了帧内预测方向,即非ALL_IDX,则不用进行帧内预测方向分析了
    25.         if (intraMode.cu.m_lumaIntraDir[puIdx] != (uint8_t)ALL_IDX)
    26.             bmode = intraMode.cu.m_lumaIntraDir[puIdx];
    27.         //否则,进行最优帧内预测方向计算
    28.         else
    29.         {
    30.             uint64_t candCostList[MAX_RD_INTRA_MODES];
    31.             uint32_t rdModeList[MAX_RD_INTRA_MODES];
    32.             uint64_t bcost;
    33.             int maxCandCount = 2 + m_param->rdLevel + ((depth + initTuDepth) >> 1);
    34.             {
    35.                 ProfileCUScope(intraMode.cu, intraAnalysisElapsedTime, countIntraAnalysis);
    36.                 // Reference sample smoothing
    37.                 IntraNeighbors intraNeighbors;
    38.                 //获取neighbor参考像素可用信息
    39.                 initIntraNeighbors(cu, absPartIdx, initTuDepth, true, &intraNeighbors);
    40.                 //对neighbor像素进行填充,并平滑滤波
    41.                 initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, ALL_IDX);
    42.                 // determine set of modes to be tested (using prediction signal only)
    43.                 //取原始YUV及其stride
    44.                 const pixel* fenc = fencYuv->getLumaAddr(absPartIdx);
    45.                 uint32_t stride = predYuv->m_size;
    46.                 int scaleTuSize = tuSize;
    47.                 int scaleStride = stride;
    48.                 int costShift = 0;
    49.                 //加载啥???
    50.                 m_entropyCoder.loadIntraDirModeLuma(m_rqt[depth].cur);
    51.                 /* there are three cost tiers for intra modes:
    52.                 *  pred[0]          - mode probable, least cost
    53.                 *  pred[1], pred[2] - less probable, slightly more cost
    54.                 *  non-mpm modes    - all cost the same (rbits) */
    55.                 uint64_t mpms;            //mpms映射,低0~34bit有效
    56.                 uint32_t mpmModes[3];    //存储三个mpm
    57.                 //加载mpms,并得到若没有命中mpm时的bits开销
    58.                 uint32_t rbits = getIntraRemModeBits(cu, absPartIdx, mpmModes, mpms);
    59.                 //加载相应size的sa8d计算函数指针
    60.                 pixelcmp_t sa8d = primitives.cu[sizeIdx].sa8d;
    61.                 //存储35个帧内预测方向的cost
    62.                 uint64_t modeCosts[35];
    63.                 /* 进行DC帧内预测,并得到其bits、distorton(sa8d)、cost开销,并赋值给bcost*/
    64.                 primitives.cu[sizeIdx].intra_pred[DC_IDX](m_intraPred, scaleStride, intraNeighbourBuf[0], 0, (scaleTuSize <= 16));
    65.                 //根据有没有命中mpm返回不同的bits。这里的bits仅为记录最优帧内预测方向的bits开销
    66.                 uint32_t bits = (mpms & ((uint64_t)1 << DC_IDX)) ? m_entropyCoder.bitsIntraModeMPM(mpmModes, DC_IDX) : rbits;
    67.                 //计算sa8d失真
    68.                 uint32_t sad = sa8d(fenc, scaleStride, m_intraPred, scaleStride) << costShift;
    69.                 //计算rdcost
    70.                 modeCosts[DC_IDX] = bcost = m_rdCost.calcRdSADCost(sad, bits);
    71.                 /* 进行PLANAR帧内预测,并得到其bits、distorton(sa8d)、cost开销,更新bcost*/
    72.                 //若tuSize再8~32之间,使用平滑滤波后的参考像素,若不在区间内,则使用未平滑滤波的参考像素
    73.                 pixel* planar = intraNeighbourBuf[0];
    74.                 if (tuSize >= 8 && tuSize <= 32)
    75.                     planar = intraNeighbourBuf[1];
    76.                 //PLANAR帧内预测
    77.                 primitives.cu[sizeIdx].intra_pred[PLANAR_IDX](m_intraPred, scaleStride, planar, 0, 0);
    78.                 //bits开销
    79.                 bits = (mpms & ((uint64_t)1 << PLANAR_IDX)) ? m_entropyCoder.bitsIntraModeMPM(mpmModes, PLANAR_IDX) : rbits;
    80.                 //distortion
    81.                 sad = sa8d(fenc, scaleStride, m_intraPred, scaleStride) << costShift;
    82.                 //计算cost
    83.                 modeCosts[PLANAR_IDX] = m_rdCost.calcRdSADCost(sad, bits);
    84.                 //基于cost更新最优帧内预测模式
    85.                 COPY1_IF_LT(bcost, modeCosts[PLANAR_IDX]);
    86.                 /* 进行angle2~34帧内预测,得到其bits、distorton(sa8d)、cost开销,并更新bcost
    87.                     intra_pred_allangs只是将33种帧内预测方向集中起来计算而已    */
    88.                 //若intra_pred_allangs
    89.                 if (primitives.cu[sizeIdx].intra_pred_allangs)
    90.                 {
    91.                     /*    将原始YUC转置,输出到m_fencTransposed
    92.                         angle2~17的预测方向和angle19~34的预测方向是转置关系    */
    93.                     primitives.cu[sizeIdx].transpose(m_fencTransposed, fenc, scaleStride);
    94.                     //进行angle2~34帧内预测,将33个预测的结果全部输出到m_intraPredAngs
    95.                     primitives.cu[sizeIdx].intra_pred_allangs(m_intraPredAngs, intraNeighbourBuf[0], intraNeighbourBuf[1], (scaleTuSize <= 16));
    96.                     //遍历angle2~34
    97.                     for (int mode = 2; mode < 35; mode++)
    98.                     {
    99.                         //计算最优帧内预测方向的bits开销
    100.                         bits = (mpms & ((uint64_t)1 << mode)) ? m_entropyCoder.bitsIntraModeMPM(mpmModes, mode) : rbits;
    101.                         //若是angle2~18,则与转置后的YUV矩阵计算sa8d
    102.                         if (mode < 18)
    103.                             sad = sa8d(m_fencTransposed, scaleTuSize, &m_intraPredAngs[(mode - 2) * (scaleTuSize * scaleTuSize)], scaleTuSize) << costShift;
    104.                         //若是angle19~24,则与原始YUV矩阵计算sa8d
    105.                         else
    106.                             sad = sa8d(fenc, scaleStride, &m_intraPredAngs[(mode - 2) * (scaleTuSize * scaleTuSize)], scaleTuSize) << costShift;
    107.                         //得到rdcost
    108.                         modeCosts[mode] = m_rdCost.calcRdSADCost(sad, bits);
    109.                         //更新最优帧内预测方向
    110.                         COPY1_IF_LT(bcost, modeCosts[mode]);
    111.                     }
    112.                 }
    113.                 //若非intra_pred_allangs
    114.                 else
    115.                 {
    116.                     //遍历angle2~34
    117.                     for (int mode = 2; mode < 35; mode++)
    118.                     {
    119.                         //计算bits开销
    120.                         bits = (mpms & ((uint64_t)1 << mode)) ? m_entropyCoder.bitsIntraModeMPM(mpmModes, mode) : rbits;
    121.                         //是否用平滑滤波后的参考像素
    122.                         int filter = !!(g_intraFilterFlags[mode] & scaleTuSize);
    123.                         //mode方向进行帧内预测
    124.                         primitives.cu[sizeIdx].intra_pred[mode](m_intraPred, scaleTuSize, intraNeighbourBuf[filter], mode, scaleTuSize <= 16);
    125.                         //计算sa8d
    126.                         sad = sa8d(fenc, scaleStride, m_intraPred, scaleTuSize) << costShift;
    127.                         //计算rdcost
    128.                         modeCosts[mode] = m_rdCost.calcRdSADCost(sad, bits);
    129.                         //更新最优帧内预测方向
    130.                         COPY1_IF_LT(bcost, modeCosts[mode]);
    131.                     }
    132.                 }
    133.                 /* 到这里只是简单的基于
    134.                     cost = sa8d + lambda * IPM_bits
    135.                     确定了最优帧内预测开销bcost,
    136.                     以及35种帧内预测方向各自的rdcost,存储在modeCosts[35]
    137.                     有意义但并不准确,下面依据bcost缩小帧内预测方向搜索范围,
    138.                     得到准确的最优帧内预测方向*/
    139.                 //初始化candCostList所有为MAX
    140.                 for (int i = 0; i < maxCandCount; i++)
    141.                     candCostList[i] = MAX_INT64;
    142.                 //1.25倍的bcost为阈值
    143.                 uint64_t paddedBcost = bcost + (bcost >> 2); // 1.25%
    144.                 //遍历35种帧内预测方向,在满足条件的帧内预测方向中寻找最优的maxCandCount个,存储到candCostList中
    145.                 for (int mode = 0; mode < 35; mode++)
    146.                     //若该帧内预测方向之前简单计算的cost在1.25倍最优帧内预测方向的cost以内,或命中了mpm,则进行更新CandList
    147.                     if ((modeCosts[mode] < paddedBcost) || ((uint32_t)mode == mpmModes[0]))
    148.                         /* choose for R-D analysis only if this mode passes cost threshold or matches MPM[0] */
    149.                         updateCandList(mode, modeCosts[mode], maxCandCount, rdModeList, candCostList);
    150.             }
    151.             /* measure best candidates using simple RDO (no TU splits) */
    152.             bcost = MAX_INT64;
    153.             //遍历所有Cand,将cand中的每一个帧内预测方向都严格计算一边开销
    154.             for (int i = 0; i < maxCandCount; i++)
    155.             {
    156.                 //若其cost为MAX,则break,不需要继续了,candCostList无可用帧内预测方向
    157.                 if (candCostList[i] == MAX_INT64)
    158.                     break;
    159.                 ProfileCUScope(intraMode.cu, intraRDOElapsedTime[cuGeom.depth], countIntraRDO[cuGeom.depth]);
    160.                 //加载熵编码上下文
    161.                 m_entropyCoder.load(m_rqt[depth].cur);
    162.                 //设置好帧内预测方向
    163.                 cu.setLumaIntraDirSubParts(rdModeList[i], absPartIdx, depth + initTuDepth);
    164.                 Cost icosts;
    165.                 /*    针对指定的帧内预测方向,
    166.                     严格基于rdcost = sse(fenc, recon) + lambda * all_bits
    167.                     确定最优的TU划分,并得到rdcost、bits、distortion、energy开销    */
    168.                 if (checkTransformSkip)
    169.                     codeIntraLumaTSkip(intraMode, cuGeom, initTuDepth, absPartIdx, icosts);
    170.                 else
    171.                     codeIntraLumaQT(intraMode, cuGeom, initTuDepth, absPartIdx, false, icosts, depthRange);
    172.                 //依据rdcost更新bcost和bmode
    173.                 COPY2_IF_LT(bcost, icosts.rdcost, bmode, rdModeList[i]);
    174.             }
    175.             /*
    176.                 到这里已经得到了严格意义上的最优帧内预测方向bmode及其bcost
    177.             */
    178.         }
    179.         ProfileCUScope(intraMode.cu, intraRDOElapsedTime[cuGeom.depth], countIntraRDO[cuGeom.depth]);
    180.         /* remeasure best mode, allowing TU splits */
    181.         //重新设置刚刚在cand中确定的最优帧内预测方向
    182.         cu.setLumaIntraDirSubParts(bmode, absPartIdx, depth + initTuDepth);
    183.         //加载熵编码上下文
    184.         m_entropyCoder.load(m_rqt[depth].cur);
    185.         //再次计算一遍
    186.         Cost icosts;
    187.         //计算当前intraMod下的最优TU划分,并得到严格的distortion、bits、rdcost和energy
    188.         if (checkTransformSkip)
    189.             codeIntraLumaTSkip(intraMode, cuGeom, initTuDepth, absPartIdx, icosts);
    190.         else
    191.             codeIntraLumaQT(intraMode, cuGeom, initTuDepth, absPartIdx, true, icosts, depthRange);
    192.         
    193.         //累加上当前PU的distortion
    194.         totalDistortion += icosts.distortion;
    195.         //将DCT系数和recon的YUV数据提取存储下来
    196.         extractIntraResultQT(cu, *reconYuv, initTuDepth, absPartIdx);
    197.         // set reconstruction for next intra prediction blocks
    198.         //若不是最后一个PU,则将recon的YUV拷贝下来,为下一个PU作像素参考
    199.         if (puIdx != numPU - 1)
    200.         {
    201.             PicYuv*  reconPic = m_frame->m_reconPic;
    202.             pixel*   dst       = reconPic->getLumaAddr(cu.m_cuAddr, cuGeom.absPartIdx + absPartIdx);
    203.             uint32_t dststride = reconPic->m_stride;
    204.             const pixel*   src = reconYuv->getLumaAddr(absPartIdx);
    205.             uint32_t srcstride = reconYuv->m_size;
    206.             primitives.cu[log2TrSize - 2].copy_pp(dst, dststride, src, srcstride);
    207.         }
    208.     }// end of for (uint32_t puIdx = 0; puIdx < numPU; puIdx++, absPartIdx += qNumParts)
    209.     //若CU划分了多个PU,即4
    210.     if (numPU > 1)
    211.     {
    212.         uint32_t combCbfY = 0;
    213.         //merge四个PU的cbf
    214.         for (uint32_t qIdx = 0, qPartIdx = 0; qIdx < 4; ++qIdx, qPartIdx += qNumParts)
    215.             combCbfY |= cu.getCbf(qPartIdx, TEXT_LUMA, 1);
    216.         //m_cbf[plane][absPartIdx],记录下来
    217.         cu.m_cbf[0][0] |= combCbfY;
    218.     }
    219.     // TODO: remove this,恢复熵编码上下文
    220.     m_entropyCoder.load(m_rqt[depth].cur);
    221.     return totalDistortion;
    222. }

    【函数】Predict::initAdiPattern()

    函数功能             : 获取intra周边参考像素点 并对其滤波
    参数 cu               : 当前编码的CU
    参数 cuGeom           : 当前CU几何信息
    参数 puAbsPartIdx     : 为当前PU在当前CU下的zigzag标号,不是CTU下的zigzag标号
    参数 intraNeighbors   : 当前PU周边块的可用信息
    参数 dirMode          : 具体亮度模式 或者 ALL_IDX(在搜索intra方向时是此值)
    调用过程:
    Search::estIntraPredQT    ->    这内预测最优模式选择
    Predict::initAdiPattern()    ->    对周边参考像素点进行滤波
    次函数在帧内预测之前进行PU的边界参考像素进行填充以及平滑滤波。平滑滤波是低频增强的空间域滤波技术,目的是模糊、或者消除噪音。过程:
    (1)得到tu的size即size*2
    (2)取reconYUV
    (3)对neighbor不可用参考像素进行填充
    (4)分别取topLeft、topLast、leftLast像素
    (5)进行平滑滤波
        若tusize为32x32,且允许强平滑滤波,则使用强平滑滤波
    1.计算阈值,并分别取topMiddle和leftMiddle像素值
    2.若若上边的 (最左边+最右边)-中间*2小于阈值,且左边的 (最上边+最下边)-中间*2 小于 阈值,则使用强双线性差值进行平滑滤波。否则,进行常规平滑滤波
    1. void Predict::initAdiPattern(const CUData& cu, const CUGeom& cuGeom, uint32_t puAbsPartIdx, const IntraNeighbors& intraNeighbors, int dirMode)
    2. {
    3.     //得到tu的像素size
    4.     int tuSize = 1 << intraNeighbors.log2TrSize;
    5.     //得到tu的像素的两倍
    6.     int tuSize2 = tuSize << 1;
    7.     //取reconPic
    8.     PicYuv* reconPic = cu.m_encData->m_reconPic;
    9.     pixel* adiOrigin = reconPic->getLumaAddr(cu.m_cuAddr, cuGeom.absPartIdx + puAbsPartIdx);
    10.     intptr_t picStride = reconPic->m_stride;
    11.     //进行neighbor不可用参考像素进行填充,输出到intraNeighbourBuf[0]中
    12.     fillReferenceSamples(adiOrigin, picStride, intraNeighbors, intraNeighbourBuf[0]);
    13.     pixel* refBuf = intraNeighbourBuf[0];    //unfiltered参考像素
    14.     pixel* fltBuf = intraNeighbourBuf[1];    //filtered参考像素
    15.     //取左上角像素、上边的最右边像素、左边的最下边像素
    16.     pixel topLeft = refBuf[0], topLast = refBuf[tuSize2], leftLast = refBuf[tuSize2 + tuSize2];
    17.     /*    若所有帧内预测方向都允许 && tuSize为8/16/32之间一种,
    18.         或当前tuSize的当前预测方向允许平滑滤波,
    19.         则进行平滑滤波    */
    20.     if (dirMode == ALL_IDX ? (8 | 16 | 32) & tuSize : g_intraFilterFlags[dirMode] & tuSize)
    21.     {
    22.         // generate filtered intra prediction samples
    23.         //使用强帧内预测平滑 && tusize为32x32pixel,则进行强平滑滤波
    24.         if (cu.m_slice->m_sps->bUseStrongIntraSmoothing && tuSize == 32)
    25.         {
    26.             //计算阈值
    27.             const int threshold = 1 << (X265_DEPTH - 5);
    28.             //取上边的中间像素,左边的中间像素
    29.             pixel topMiddle = refBuf[32], leftMiddle = refBuf[tuSize2 + 32];
    30.             /*    若上边的 (最左边+最右边)-中间*2 小于 阈值,
    31.                 且左边的 (最上边+最下边)-中间*2 小于 阈值,
    32.                 则使用强双线性差值进行平滑滤波    */
    33.             if (abs(topLeft + topLast  - (topMiddle  << 1)) < threshold &&
    34.                 abs(topLeft + leftLast - (leftMiddle << 1)) < threshold)
    35.             {
    36.                 // "strong" bilinear interpolation 使用强双线性插值
    37.                 const int shift = 5 + 1;
    38.                 int init = (topLeft << shift) + tuSize;
    39.                 int deltaL, deltaR;
    40.                 //Δleft = 左边最下边-左边最上边,Δtop = 上边最右边-上边最左边
    41.                 deltaL = leftLast - topLeft; deltaR = topLast - topLeft;
    42.                 //最左上角,即左边最上,上边最左,像素不进行平滑滤波,直接输出
    43.                 fltBuf[0] = topLeft;
    44.                 //遍历2size长度边界参考像素
    45.                 for (int i = 1; i < tuSize2; i++)
    46.                 {
    47.                     //左边平滑滤波,输出到fltBuf中
    48.                     fltBuf[i + tuSize2] = (pixel)((init + deltaL * i) >> shift); // Left Filtering
    49.                     //上边平滑滤波,输出到fltBuf中
    50.                     fltBuf[i] = (pixel)((init + deltaR * i) >> shift);           // Above Filtering
    51.                 }
    52.                 //上边最下不进行平滑滤波
    53.                 fltBuf[tuSize2] = topLast;
    54.                 //左边最下不进行平滑滤波
    55.                 fltBuf[tuSize2 + tuSize2] = leftLast;
    56.                 return;
    57.             }
    58.         }
    59.         //对参考像素refBuf进行常规的平滑过滤,输出到fltBuf中
    60.         primitives.cu[intraNeighbors.log2TrSize - 2].intra_filter(refBuf, fltBuf);
    61.     }
    62. }


    【函数】Predict::fillReferenceSamples()  

    参考像素进行滤波,以及参考像素填充。
    相邻块都不可用,采用dc预测,左边界和上边界全部填充128;
    相邻块全部可用,左边界和上边界采用对应重建像素填充;
    相邻块部分可用,可用边界采用对应重建像素填充,不可用边界采用当前像素填充?
    针对参考像素进行滤波(intraFilter),采用1:2:1三抽头滤波器;针对32x32块,可以进行强双线性滤波。
    调用流程:
    Search::codeIntraLumaQT    ->
    Predict::initAdiPattern    -> 
    Predict::fillReferenceSamples
    帧内预测时,会使用左上(1个像素)、上、右上、左、左下共4N+1个像素作为参考像素,这些参考像素还可能会先经过滤波处理,参考像素是否可用在结构体初始化时(initIntraNeighbors)就已处理完。
    关键代码:
    1. const pixel dcValue = (pixel)(1 << (X265_DEPTH - 1));//无参考像素时的固定预测值
    2.     int numIntraNeighbor = intraNeighbors.numIntraNeighbor;
    3.     int totalUnits = intraNeighbors.totalUnits;
    4.     uint32_t tuSize = 1 << intraNeighbors.log2TrSize;
    5.     uint32_t refSize = tuSize * 2 + 1;
    6.     // Nothing is available, perform DC prediction.
    7.     if (numIntraNeighbor == 0)//所有像素都不可用时,使用固定值填充,对于8比特像素,预测值为12810bit像素,预测值为512
    8.     {
    9.         // Fill top border with DC value
    10.         for (uint32_t i = 0; i < refSize; i++)
    11.             dst[i] = dcValue
    12.         // Fill left border with DC value
    13.         for (uint32_t i = 0; i < refSize - 1; i++)
    14.             dst[i + refSize] = dcValue;
    15.     }
    16.     else if (numIntraNeighbor == totalUnits)//所有参考像素均可用,以像素块的形式直接复制
    17.     {
    18.         // Fill top border with rec. samples
    19.         const pixel* adiTemp = adiOrigin - picStride - 1;
    20.         memcpy(dst, adiTemp, refSize * sizeof(pixel));
    21.         // Fill left border with rec. samples
    22.         adiTemp = adiOrigin - 1;
    23.         for (uint32_t i = 0; i < refSize - 1; i++)
    24.         {
    25.             dst[i + refSize] = adiTemp[0];
    26.             adiTemp += picStride;
    27.         }
    28.     }
    29.     else // reference samples are partially available 部分可用时,要对每个区域依次判断,参考像素不存在时,使用存在的最临近参考像素填充
    30.     {
    31.         ......
    32.         if (!bNeighborFlags[0])//第一个像素不可用时,找到第一个可用的像素作为真实的起点,并将起点前所有参考像素填充该值
    33.         {
    34.             // very bottom unit of bottom-left; at least one unit will be valid.
    35.             while (next < totalUnits && !bNeighborFlags[next])
    36.                 next++;
    37.             pixel* pAdiLineNext = adiLineBuffer + ((next < leftUnits) ? (next * unitHeight) : (pAdiLineTopRowOffset + (next * unitWidth)));
    38.             const pixel refSample = *pAdiLineNext;
    39.            ......
    40.         }
    41.         // pad all other reference samples.起点后的值,如果不可用,则复制前一个值,以实现最临近参考像素填充
    42.         while (curr < totalUnits)
    43.         {
    44.             if (!bNeighborFlags[curr]) // samples not available
    45.             {
    46.                 int numSamplesInCurrUnit = (curr >= leftUnits) ? unitWidth : unitHeight;
    47.                 const pixel refSample = *(adi - 1);
    48.                 for (int i = 0; i < numSamplesInCurrUnit; i++)
    49.                     adi[i] = refSample;
    50.                 adi += numSamplesInCurrUnit;
    51.                 curr++;
    52.             }
    53.             else
    54.             {
    55.                 adi += (curr >= leftUnits) ? unitWidth : unitHeight;
    56.                 curr++;
    57.             }
    58.         }
    59.       ......
    60.     }


    【源码】Search::codeIntraLumaQT()

    最优模式预测,变换、量化、反变换、反量化、重建、计算 cost。
    通过对当前PU进行计算残差+变换+量化+反量化+反变换+重建帧得到严格意义上的distortion(sse)开销,
    对当前CU进行完整的bits编码,则到严格意义的bits开销,
    基于distortion和bits来得到rdcost
    基于来得到当前TU的最优split模式(即TU split tree),及其distortion、bits、rdcost、energy
    主要分为以下步骤:
    如果当前CU可以进一步划分,则递归执行该函数进行划分,直到不能再划分为止
    如果当前CU不能进一步划分,则调用predIntraLumaAng函数进行预测,调用transformNxN函数进行变换量化,之后再调用invtransformNxN函数进行反量化、反变换,和预测值相加获得重建像素,计算原始像素和重建像素的SSE作为失真,计算编码模式和系数所需的比特,从而计算RD Cost
        过程:
            1.载入CUdata、depth等信息
            2.判断mightNotSplit?mightSplit?
            3.计算mightNotSplit状态下的各个数据
                ·若mightNotSplit,即mightNotSplit=true,分析计算不再split状态下的各个数据
                    1.若mightSplit,则将当前熵编码上下文存储到rqtRoot中,用于后期计算split时候加载,保证上下文一致性
                    2.得到相邻PU的可参考像素信息
                    3.进行相邻PU像素补全及平滑滤波
                    4.按照指定帧内预测方向IPM进行帧内预测到pred中
                    5.设置transformSkip为false,TUdepth
                    6.计算残差resi = fenc - pred
                    7.对残差进行转换和量化,得到非零系数的个数
                    8.得到重构帧recon
                        ·若存在非零系数,则进行反量化反转换,并得到重构帧recon = pred + resi
                        ·否则,recon = pred
                    9.根据非零系数来设置cbf
                    10.根据recon和fenc来计算sse distortion
                    11.计算bits开销
                        1.重置bits
                        2.若absPartIdx=0,则
                            1.若非Islice,则编码transform bypass flag、skipFlag、predMode
                            2.编码predSize
                        3.编码帧内预测方向
                        4.若当前TUsize不是所允许的最小size,则编码subDivFlag = false
                        5.编码cbf
                        6.若有cbf,编码残差系数
                        7.得到前面所有编码的bits总数
                        8.若开启了rdPenalty,且TUsize为32x32,且非Islice,则bits翻四倍
                    12.根据distortion和bits开销,计算psyCost和rdCost,存储到fullCost中
                ·若不mightNotSplit,则其cost,即fullCost为MAX
            4.计算split状态下的各个数据,若mightSplit,则
                1.若mightNotSplit,则
                    1.将之前分析的mightNotSplit上下文暂存下来
                    2.加载最初的上下文,保证上下文一致性
                2.计算是否TransformSkip
                 3.遍历四个split出来的子TU
                    1.递归调用函数进行分析计算
                        ·若TransformSkip,则调用codeIntraLumaTSkip
                        ·否则,调用codeIntraLumaQT
                    2.整合四个子TU的cbf
                4.存储下cbf
                5.若mightNotSplit,且TUsize不是所允许的最小size,则
                    1.重置bits
                    2.编码subDivFlag = true
                    3.累加subDivFlag的bits
                    4.基于distortion和bits开销,计算split状态的rdcost
                6.对比split和notSplit
                    ·若split的rdcost
                    ·否则,notSplit较优,加载之前暂存下的mightNotSplit上下文,恢复mightNotSplit的tuDepth、cbf、transforSkip
            5.执行到这里notSplit较优,保存recon的YUV数据
            6.结算rdcost、distortion、bits、energy输出
    1. void Search::codeIntraLumaQT(Mode& mode, const CUGeom& cuGeom, uint32_t tuDepth, uint32_t absPartIdx, bool bAllowSplit, Cost& outCost, const uint32_t depthRange[2])
    2. {
    3.     //取CUData
    4.     CUData& cu = mode.cu;
    5.     //取fullDepth = CUDepth + TUDepth
    6.     uint32_t fullDepth  = cuGeom.depth + tuDepth;
    7.     //log TUsize
    8.     uint32_t log2TrSize = cuGeom.log2CUSize - tuDepth;
    9.     uint32_t qtLayer    = log2TrSize - 2;
    10.     uint32_t sizeIdx    = log2TrSize - 2;
    11.     //只要TUsize在上限以下,就可以不再split
    12.     bool mightNotSplit  = log2TrSize <= depthRange[1];
    13.     //只要TUsize在下限以上,就可以split
    14.     bool mightSplit     = (log2TrSize > depthRange[0]) && (bAllowSplit || !mightNotSplit);
    15.     bool bEnableRDOQ  = !!m_param->rdoqLevel;
    16.     /* If maximum RD penalty, force spits at TU size 32x32 if SPS allows TUs of 16x16
    17.         若rdPenaly为2,即full,且非Islice,且TU的尺寸在32x32,且TU尺寸允许小于等于16x16,则强制split*/
    18.     if (m_param->rdPenalty == 2 && m_slice->m_sliceType != I_SLICE && log2TrSize == 5 && depthRange[0] <= 4)
    19.     {
    20.         mightNotSplit = false;
    21.         mightSplit = true;
    22.     }
    23.     /*    fullCost表示当前CU不进行TU的划分的cost,整个CU就是一个TU;
    24.         与之对应的有splitCost,表示进行了TU划分的cost*/
    25.     Cost fullCost;
    26.     //CBF
    27.     uint32_t bCBF = 0;
    28.     //存储recon
    29.     pixel*   reconQt = m_rqt[qtLayer].reconQtYuv.getLumaAddr(absPartIdx);
    30.     uint32_t reconQtStride = m_rqt[qtLayer].reconQtYuv.m_size;
    31.     /*
    32.         若可以不再split,则计算不再split的cost,即fullCost
    33.     */
    34.     if (mightNotSplit)
    35.     {
    36.         //若可以split,则将当前上下文存储到rqtRoot中,保证后面计算split时上下文的一致性
    37.         if (mightSplit)
    38.             m_entropyCoder.store(m_rqt[fullDepth].rqtRoot);
    39.         //取原始YUV
    40.         const pixel* fenc = mode.fencYuv->getLumaAddr(absPartIdx);
    41.         //取预测的YUV
    42.         pixel*   pred     = mode.predYuv.getLumaAddr(absPartIdx);
    43.         //得到残差YUV
    44.         int16_t* residual = m_rqt[cuGeom.depth].tmpResiYuv.getLumaAddr(absPartIdx);
    45.         uint32_t stride   = mode.fencYuv->m_size;
    46.         // init availability pattern
    47.         uint32_t lumaPredMode = cu.m_lumaIntraDir[absPartIdx];
    48.         IntraNeighbors intraNeighbors;
    49.         //得到相邻PU的可参考信息
    50.         initIntraNeighbors(cu, absPartIdx, tuDepth, true, &intraNeighbors);
    51.         //进行相邻PU像素补全及平滑滤波
    52.         initAdiPattern(cu, cuGeom, absPartIdx, intraNeighbors, lumaPredMode);
    53.         // get prediction signal 按照帧内预测方向进行预测计算,输出到pred中
    54.         predIntraLumaAng(lumaPredMode, pred, stride, log2TrSize);
    55.         //设置TransformSkip为false
    56.         cu.setTransformSkipSubParts(0, TEXT_LUMA, absPartIdx, fullDepth);
    57.         //设置tuDepth为fullDepth,即cuDepth+initTuDepth
    58.         cu.setTUDepthSubParts(tuDepth, absPartIdx, fullDepth);
    59.         uint32_t coeffOffsetY = absPartIdx << (LOG2_UNIT_SIZE * 2);
    60.         coeff_t* coeffY       = m_rqt[qtLayer].coeffRQT[0] + coeffOffsetY;
    61.         // store original entropy coding status 这是是啥
    62.         if (bEnableRDOQ)
    63.             m_entropyCoder.estBit(m_entropyCoder.m_estBitsSbac, log2TrSize, true);
    64.         //计算残差resi = fenc - pred
    65.         primitives.cu[sizeIdx].calcresidual[stride % 64 == 0](fenc, pred, residual, stride);
    66.         //若残差进行tranform,输出到coeffY中,并得到非零系数的个数numSig
    67.         uint32_t numSig = m_quant.transformNxN(cu, fenc, stride, residual, stride, coeffY, log2TrSize, TEXT_LUMA, absPartIdx, false);
    68.         /* 得到重构帧recon */
    69.         if (numSig)    //若有残差系数
    70.         {
    71.             //进行反transform
    72.             m_quant.invtransformNxN(cu, residual, stride, coeffY, log2TrSize, TEXT_LUMA, true, false, numSig);
    73.             bool reconQtYuvAlign = m_rqt[qtLayer].reconQtYuv.getAddrOffset(absPartIdx, mode.predYuv.m_size) % 64 == 0;
    74.             bool predAlign = mode.predYuv.getAddrOffset(absPartIdx, mode.predYuv.m_size) % 64 == 0;
    75.             bool residualAlign = m_rqt[cuGeom.depth].tmpResiYuv.getAddrOffset(absPartIdx, mode.predYuv.m_size) % 64 == 0;
    76.             bool bufferAlignCheck = (reconQtStride % 64 == 0) && (stride % 64 == 0) && reconQtYuvAlign && predAlign && residualAlign;
    77.             //重构recon = pred + resi
    78.             primitives.cu[sizeIdx].add_ps[bufferAlignCheck](reconQt, reconQtStride, pred, residual, stride, stride);
    79.         }
    80.         else
    81.             // no coded residual, recon = pred,将pred输出到recon中
    82.             primitives.cu[sizeIdx].copy_pp(reconQt, reconQtStride, pred, stride);
    83.         //记录CBF
    84.         bCBF = !!numSig << tuDepth;
    85.         //设置CBF
    86.         cu.setCbfSubParts(bCBF, TEXT_LUMA, absPartIdx, fullDepth);
    87.         //根据fecn和recon来计算sse失真
    88.         fullCost.distortion = primitives.cu[sizeIdx].sse_pp(reconQt, reconQtStride, fenc, stride);
    89.         /*
    90.             到这里已经计算了严格意义上的distortion(fenc , recon)
    91.         */
    92.         //重置bits
    93.         m_entropyCoder.resetBits();
    94.         if (!absPartIdx)
    95.         {
    96.             //若非Islice
    97.             if (!cu.m_slice->isIntra())
    98.             {
    99.                 //若允许旁路trans和quan,则编码bypass flag
    100.                 if (cu.m_slice->m_pps->bTransquantBypassEnabled)
    101.                     m_entropyCoder.codeCUTransquantBypassFlag(cu.m_tqBypass[0]);
    102.                 //编码skip flag
    103.                 m_entropyCoder.codeSkipFlag(cu, 0);
    104.                 //编码帧内预测方向
    105.                 m_entropyCoder.codePredMode(cu.m_predMode[0]);
    106.             }
    107.             //编码partSize
    108.             m_entropyCoder.codePartSize(cu, 0, cuGeom.depth);
    109.         }
    110.         /* 编码帧内预测方向 */
    111.         //若当前CU为SIZE_2Nx2N,则只需要编码一个方向
    112.         if (cu.m_partSize[0] == SIZE_2Nx2N)
    113.         {
    114.             if (!absPartIdx)
    115.                 m_entropyCoder.codeIntraDirLumaAng(cu, 0, false);
    116.         }
    117.         //若非SIZE_2Nx2N,则需要编码四个PU的方向。。。还没理清楚
    118.         else
    119.         {
    120.             uint32_t qNumParts = cuGeom.numPartitions >> 2;
    121.             //若initTuDepth = 0
    122.             if (!tuDepth)
    123.             {
    124.                 for (uint32_t qIdx = 0; qIdx < 4; ++qIdx)
    125.                     m_entropyCoder.codeIntraDirLumaAng(cu, qIdx * qNumParts, false);
    126.             }
    127.             else if (!(absPartIdx & (qNumParts - 1)))
    128.                 m_entropyCoder.codeIntraDirLumaAng(cu, absPartIdx, false);
    129.         }
    130.         //若当前TUsize不是允许的最小size,则编码subDivFlag = false
    131.         if (log2TrSize != depthRange[0])
    132.             m_entropyCoder.codeTransformSubdivFlag(0, 5 - log2TrSize);
    133.         //编码cbf
    134.         m_entropyCoder.codeQtCbfLuma(!!numSig, tuDepth);
    135.         //若有cbf,即有残差,则编码残差
    136.         if (cu.getCbf(absPartIdx, TEXT_LUMA, tuDepth))
    137.             m_entropyCoder.codeCoeffNxN(cu, coeffY, absPartIdx, log2TrSize, TEXT_LUMA);
    138.         //得到前面编码的bits开销总和
    139.         fullCost.bits = m_entropyCoder.getNumberOfWrittenBits();
    140.         //若开启了rdPenalty,且TUsize为32x32,且非Islice,则bits翻四倍
    141.         if (m_param->rdPenalty && log2TrSize == 5 && m_slice->m_sliceType != I_SLICE)
    142.             fullCost.bits *= 4;
    143.         //计算根据distortion(fenc,recon)和全部的编码bits来计算rdcost和enerpy
    144.         if (m_rdCost.m_psyRd)
    145.         {
    146.             fullCost.energy = m_rdCost.psyCost(sizeIdx, fenc, mode.fencYuv->m_size, reconQt, reconQtStride);
    147.             fullCost.rdcost = m_rdCost.calcPsyRdCost(fullCost.distortion, fullCost.bits, fullCost.energy);
    148.         }
    149.         else if(m_rdCost.m_ssimRd)
    150.         {
    151.             fullCost.energy = m_quant.ssimDistortion(cu, fenc, stride, reconQt, reconQtStride, log2TrSize, TEXT_LUMA, absPartIdx);
    152.             fullCost.rdcost = m_rdCost.calcSsimRdCost(fullCost.distortion, fullCost.bits, fullCost.energy);
    153.         }
    154.         else
    155.             fullCost.rdcost = m_rdCost.calcRdCost(fullCost.distortion, fullCost.bits);
    156.     }
    157.     //if !(mightNotSplit),即一定要split,则fullCcost的rdcost为max
    158.     else
    159.         fullCost.rdcost = MAX_INT64;
    160.     /*
    161.         若可以split,则计算split的cost,即splitCost
    162.     */
    163.     if (mightSplit)
    164.     {
    165.         //若可以不split,则将之前分析不split的上下文先保存下来,再恢复没计算split之前的上下文
    166.         if (mightNotSplit)
    167.         {
    168.             //保存熵编码上下文到rqtTest中
    169.             m_entropyCoder.store(m_rqt[fullDepth].rqtTest);  // save state after full TU encode
    170.             //重新加载rqtRoot的熵编码上下文
    171.             m_entropyCoder.load(m_rqt[fullDepth].rqtRoot);   // prep state of split encode
    172.         }
    173.         /* code split block */
    174.         uint32_t qNumParts = 1 << (log2TrSize - 1 - LOG2_UNIT_SIZE) * 2;
    175.         //是否跳过transForm
    176.         int checkTransformSkip = m_slice->m_pps->bTransformSkipEnabled && (log2TrSize - 1) <= MAX_LOG2_TS_SIZE && !cu.m_tqBypass[0];
    177.         if (m_param->bEnableTSkipFast)
    178.             checkTransformSkip &= cu.m_partSize[0] != SIZE_2Nx2N;
    179.         Cost splitCost;
    180.         uint32_t cbf = 0;
    181.         //遍历四个TU
    182.         for (uint32_t qIdx = 0, qPartIdx = absPartIdx; qIdx < 4; ++qIdx, qPartIdx += qNumParts)
    183.         {
    184.             //递归调用对四个split出来的TU进行残差编码
    185.             if (checkTransformSkip)
    186.                 codeIntraLumaTSkip(mode, cuGeom, tuDepth + 1, qPartIdx, splitCost);
    187.             else
    188.                 codeIntraLumaQT(mode, cuGeom, tuDepth + 1, qPartIdx, bAllowSplit, splitCost, depthRange);
    189.             //merge四个TU的cbf
    190.             cbf |= cu.getCbf(qPartIdx, TEXT_LUMA, tuDepth + 1);
    191.         }
    192.         //cbf[plane][absPartIdx] 存储cbf
    193.         cu.m_cbf[0][absPartIdx] |= (cbf << tuDepth);
    194.         //若可以不split,且TUsize不是所允许的最小size
    195.         if (mightNotSplit && log2TrSize != depthRange[0])
    196.         {
    197.             /* If we could have coded this TU depth, include cost of subdiv flag */
    198.             //重置bits
    199.             m_entropyCoder.resetBits();
    200.             //编码subDivFlag = true
    201.             m_entropyCoder.codeTransformSubdivFlag(1, 5 - log2TrSize);
    202.             //累加subDivFlag的bits
    203.             splitCost.bits += m_entropyCoder.getNumberOfWrittenBits();
    204.             //计算rdcost
    205.             if (m_rdCost.m_psyRd)
    206.                 splitCost.rdcost = m_rdCost.calcPsyRdCost(splitCost.distortion, splitCost.bits, splitCost.energy);
    207.             else if(m_rdCost.m_ssimRd)
    208.                 splitCost.rdcost = m_rdCost.calcSsimRdCost(splitCost.distortion, splitCost.bits, splitCost.energy);
    209.             else
    210.                 splitCost.rdcost = m_rdCost.calcRdCost(splitCost.distortion, splitCost.bits);
    211.         }    //end of if (mightNotSplit && log2TrSize != depthRange[0])
    212.         /*
    213.             对比notSplit和split的cost,最优存储两者较优的
    214.             rdcost、distortion、bits、enery、transform、cbf等信息
    215.         */
    216.         //若split的rdcost < full的rdcost,则更新,return结束
    217.         if (splitCost.rdcost < fullCost.rdcost)
    218.         {
    219.             outCost.rdcost     += splitCost.rdcost;
    220.             outCost.distortion += splitCost.distortion;
    221.             outCost.bits       += splitCost.bits;
    222.             outCost.energy     += splitCost.energy;
    223.             return;
    224.         }
    225.         //若full的rdcost < split的rdcost
    226.         else
    227.         {
    228.             // recover entropy state of full-size TU encode 恢复notSplit的上下文
    229.             m_entropyCoder.load(m_rqt[fullDepth].rqtTest);
    230.             // recover transform index and Cbf values 恢复transform indx 和 cbf
    231.             cu.setTUDepthSubParts(tuDepth, absPartIdx, fullDepth);
    232.             cu.setCbfSubParts(bCBF, TEXT_LUMA, absPartIdx, fullDepth);
    233.             cu.setTransformSkipSubParts(0, TEXT_LUMA, absPartIdx, fullDepth);
    234.         }
    235.     }    //end of if (mightSplit)
    236.     /* set reconstruction for next intra prediction blocks if full TU prediction won
    237.         若最后notSplit较优(split优的话执行不到这里),恢复recon的YUV数据,并存储下来 */
    238.     PicYuv*  reconPic = m_frame->m_reconPic;
    239.     pixel*   picReconY = reconPic->getLumaAddr(cu.m_cuAddr, cuGeom.absPartIdx + absPartIdx);
    240.     intptr_t picStride = reconPic->m_stride;
    241.     primitives.cu[sizeIdx].copy_pp(picReconY, picStride, reconQt, reconQtStride);
    242.     //结算cost
    243.     outCost.rdcost     += fullCost.rdcost;
    244.     outCost.distortion += fullCost.distortion;
    245.     outCost.bits       += fullCost.bits;
    246.     outCost.energy     += fullCost.energy;
    247. }


  • 相关阅读:
    ​Vue + Element UI前端篇(二):Vue + Element 案例 ​
    Linux学习记录——삼십이 协议、序列化和反序列化
    elk日志收集系统
    windows部署python项目(以Flask为例)到docker,通过脚本一键生成dockerfile并构建镜像启动容器
    什么是人工智能(AI)数据平台?
    Flink部署——细粒度资源管理
    C++ 用sort和unique实现数据的去重
    每日一题:【LeetCode】349.两个数组的交集
    扫雷小游戏(1.0版本)
    uniapp如何在页面中只展示一条随机数据
  • 原文地址:https://blog.csdn.net/qq_34448345/article/details/128173927