一层: # 一层的LSTM计算单元,输入的feature_len=100,隐藏单元和记忆单元hidden_len=20
cell = nn.LSTMCell(input_size=100, hidden_size=20)
# 初始化隐藏单元h和记忆单元C,取batch=3
# 这里是seq_len=10个时刻的输入,每个时刻shape都是[batch,feature_len]
xs = [torch.randn(3, 100) for _ in range(10)]
# 对每个时刻,传入输入x_t和上个时刻的h_{t-1}和C_{t-1}
两层: # 输入的feature_len=100,变到该层隐藏单元和记忆单元hidden_len=30
cell_l0 = nn.LSTMCell(input_size=100, hidden_size=30)
# hidden_len从l0层的30变到这一层的20
cell_l1 = nn.LSTMCell(input_size=30, hidden_size=20)
# 分别初始化l0层和l1层的隐藏单元h和记忆单元C,取batch=3
h_l0 = torch.zeros(3, 30)
C_l0 = torch.zeros(3, 30)
h_l1 = torch.zeros(3, 20)
C_l1 = torch.zeros(3, 20)
# 这里是seq_len=10个时刻的输入,每个时刻shape都是[batch,feature_len]
xs = [torch.randn(3, 100) for _ in range(10)]
h_l0, C_l0 = cell_l0(xt, (h_l0, C_l0)) # l0层直接接受xt输入
h_l1, C_l1 = cell_l1(h_l0, (h_l1, C_l1)) # l1层接受l0层的输出h为输入