(
1
)
lim
x
→
0
∫
x
1
+
x
d
y
1
+
x
2
+
y
2
;
(
2
)
lim
x
→
0
∫
−
1
1
x
2
+
y
2
d
y
;
(
3
)
lim
x
→
0
∫
0
2
y
2
c
o
s
(
x
y
)
d
y
.
(1) limx→0∫1+xxdy1+x2+y2; (2) limx→0∫1−1√x2+y2dy; (3) limx→0∫20y2cos(xy)dy.
(
1
)
lim
x
→
0
∫
x
1
+
x
d
y
1
+
x
2
+
y
2
=
∫
0
1
+
0
d
y
1
+
0
+
y
2
=
[
a
r
c
t
a
n
y
]
0
1
=
π
4
.
(
2
)
lim
x
→
0
∫
−
1
1
x
2
+
y
2
d
y
=
∫
−
1
1
∣
y
∣
d
y
=
2
∫
0
1
y
d
y
=
1.
(
3
)
lim
x
→
0
∫
0
2
y
2
c
o
s
(
x
y
)
d
y
=
∫
0
2
y
2
(
c
o
s
0
)
d
y
=
8
3
.
(1) limx→0∫1+xxdy1+x2+y2=∫1+00dy1+0+y2=[arctan y]10=π4. (2) limx→0∫1−1√x2+y2dy=∫1−1|y|dy=2∫10ydy=1. (3) limx→0∫20y2cos(xy)dy=∫20y2(cos 0)dy=83.
(
1
)
φ
(
x
)
=
∫
s
i
n
x
c
o
s
x
(
y
2
s
i
n
x
−
y
3
)
d
y
;
(
2
)
φ
(
x
)
=
∫
0
x
l
n
(
1
+
x
y
)
y
d
y
;
(
3
)
φ
(
x
)
=
∫
x
2
x
3
a
r
c
t
a
n
y
x
d
y
;
(
4
)
φ
(
x
)
=
∫
x
x
2
e
−
x
y
2
d
y
.
(1) φ(x)=∫cos xsin x(y2sin x−y3)dy; (2) φ(x)=∫x0ln(1+xy)ydy; (3) φ(x)=∫x3x2arctan yxdy; (4) φ(x)=∫x2xe−xy2dy.
(
1
)
φ
′
(
x
)
=
∫
s
i
n
x
c
o
s
x
y
2
c
o
s
x
d
y
+
(
c
o
s
2
x
s
i
n
x
−
c
o
s
3
x
)
(
c
o
s
x
)
′
−
(
s
i
n
2
x
s
i
n
x
−
s
i
n
3
x
)
(
s
i
n
x
)
′
=
1
3
c
o
s
x
(
c
o
s
3
x
−
s
i
n
3
x
)
+
(
c
o
s
x
−
s
i
n
x
)
s
i
n
x
c
o
s
2
x
=
1
3
c
o
s
x
(
c
o
s
x
−
s
i
n
x
)
(
1
+
2
s
i
n
2
x
)
.
(
2
)
φ
′
(
x
)
=
∫
0
x
1
1
+
x
y
d
y
+
l
n
(
1
+
x
2
)
x
=
1
x
[
l
n
(
1
+
x
y
)
]
0
x
+
l
n
(
1
+
x
2
)
x
=
2
x
l
n
(
1
+
x
2
)
.
(
3
)
φ
′
(
x
)
=
∫
x
2
x
3
(
−
y
x
2
+
y
2
)
d
y
+
a
r
c
t
a
n
x
2
⋅
3
x
2
−
a
r
c
t
a
n
x
⋅
2
x
=
−
1
2
l
n
(
x
2
+
y
2
)
∣
x
2
x
3
+
3
x
2
a
r
c
t
a
n
x
2
−
2
x
a
r
c
t
a
n
x
=
l
n
1
+
x
2
1
+
x
4
+
3
x
2
a
r
c
t
a
n
x
2
−
2
x
a
r
c
t
a
n
x
.
(
4
)
φ
′
(
x
)
=
∫
x
x
2
e
−
x
y
2
(
−
y
2
)
d
y
+
e
−
x
5
⋅
2
x
−
e
−
x
3
⋅
1
=
2
x
e
−
x
5
−
e
−
x
3
−
∫
x
x
2
y
2
e
−
x
y
2
d
y
.
(1) φ′(x)=∫cos xsin xy2cos xdy+(cos2 xsin x−cos3 x)(cos x)′−(sin2 xsin x−sin3 x)(sin x)′= 13cos x(cos3 x−sin3 x)+(cos x−sin x)sin xcos2 x=13cos x(cos x−sin x)(1+2sin 2x). (2) φ′(x)=∫x011+xydy+ln(1+x2)x=1x[ln(1+xy)]x0+ln(1+x2)x=2xln(1+x2). (3) φ′(x)=∫x3x2(−yx2+y2)dy+arctan x2⋅3x2−arctan x⋅2x= −12ln(x2+y2)|x3x2+3x2arctan x2−2xarctan x=ln√1+x21+x4+3x2arctan x2−2xarctan x. (4) φ′(x)=∫x2xe−xy2(−y2)dy+e−x5⋅2x−e−x3⋅1=2xe−x5−e−x3−∫x2xy2e−xy2dy.
F
′
(
x
)
=
∫
0
x
f
(
y
)
d
y
+
2
x
f
(
x
)
,
F
′
′
(
x
)
=
f
(
x
)
+
2
f
(
x
)
+
2
x
f
′
(
x
)
=
3
f
(
x
)
+
2
x
f
′
(
x
)
.
F′(x)=∫x0f(y)dy+2xf(x),F″(x)=f(x)+2f(x)+2xf′(x)=3f(x)+2xf′(x).
(
1
)
I
=
∫
0
π
2
l
n
1
+
a
c
o
s
x
1
−
a
c
o
s
x
⋅
d
x
c
o
s
x
(
∣
a
∣
<
1
)
;
(
2
)
I
=
∫
0
π
2
l
n
(
c
o
s
2
x
+
a
2
s
i
n
2
x
)
d
x
(
a
>
0
)
.
(1) I=∫π20ln1+acos x1−acos x⋅dxcos x (|a|<1); (2) I=∫π20ln(cos2 x+a2sin2 x)dx (a>0).
(
1
)
设
φ
(
α
)
=
∫
0
π
2
l
n
1
+
α
c
o
s
x
1
−
α
c
o
s
x
⋅
d
x
c
o
s
x
(
∣
α
∣
≤
∣
a
∣
<
1
)
,
则
φ
(
0
)
=
0
,
φ
(
a
)
=
I
,
因
为
∂
∂
α
(
l
n
1
+
α
c
o
s
x
1
−
α
c
o
s
x
⋅
1
c
o
s
x
)
=
2
1
−
α
2
c
o
s
2
x
,
所
以
φ
′
(
α
)
=
∫
0
π
2
2
1
−
α
2
c
o
s
2
x
d
x
=
∫
0
π
2
2
d
(
t
a
n
x
)
s
e
c
2
x
−
α
2
=
2
∫
0
π
2
d
(
t
a
n
x
)
(
1
−
α
2
)
+
t
a
n
2
x
=
2
1
−
α
2
[
a
r
c
t
a
n
t
a
n
x
1
−
α
2
]
0
π
2
=
2
1
−
α
2
⋅
π
2
=
π
1
−
α
2
,
I
=
φ
(
a
)
−
φ
(
0
)
=
∫
0
a
φ
′
(
α
)
d
α
=
∫
0
a
π
1
−
α
2
d
α
=
π
a
r
c
s
i
n
a
.
(
2
)
设
φ
(
α
)
=
∫
0
π
2
l
n
(
c
o
s
2
x
+
α
2
s
i
n
2
x
)
d
x
,
则
φ
(
1
)
=
0
,
φ
(
a
)
=
I
,
因
为
∂
∂
α
[
l
n
(
c
o
s
2
x
+
α
2
s
i
n
2
x
)
]
=
2
α
s
i
n
2
x
c
o
s
2
x
+
α
2
s
i
n
2
x
,
所
以
φ
′
(
α
)
=
∫
0
π
2
2
α
s
i
n
2
x
c
o
s
2
x
+
α
2
s
i
n
2
x
d
x
,
令
u
=
t
a
n
x
,
则
上
式
=
2
α
∫
0
+
∞
u
2
1
+
α
2
u
2
⋅
d
u
1
+
u
2
=
2
α
α
2
−
1
[
∫
0
+
∞
d
u
1
+
u
2
−
∫
0
+
∞
d
u
1
+
α
2
u
2
]
(
α
≠
1
)
=
2
α
α
2
−
1
(
π
2
−
π
2
α
)
=
π
α
+
1
,
当
α
=
1
时
,
φ
′
(
1
)
=
∫
0
π
2
2
s
i
n
2
x
c
o
s
2
x
+
s
i
n
2
x
d
x
=
∫
0
π
2
2
s
i
n
2
x
d
x
=
π
2
,
因
此
φ
′
(
α
)
在
x
=
1
处
连
续
,
对
任
一
a
>
0
,
φ
′
(
α
)
在
区
间
[
1
,
a
]
或
[
a
,
1
]
上
连
续
,
则
I
=
φ
(
a
)
−
φ
(
1
)
=
∫
1
a
φ
′
(
α
)
d
α
=
∫
1
a
π
α
+
1
d
α
=
π
l
n
a
+
1
2
.
(1) 设φ(α)=∫π20ln1+αcos x1−αcos x⋅dxcos x (|α|≤|a|<1),则φ(0)=0,φ(a)=I,因为 ∂∂α(ln1+αcos x1−αcos x⋅1cos x)=21−α2cos2 x,所以φ′(α)=∫π2021−α2cos2 xdx=∫π202d(tan x)sec2 x−α2= 2∫π20d(tan x)(1−α2)+tan2 x=2√1−α2[arctan tan x√1−α2]π20=2√1−α2⋅π2=π√1−α2, I=φ(a)−φ(0)=∫a0φ′(α)dα=∫a0π√1−α2dα=πarcsin a. (2) 设φ(α)=∫π20ln(cos2 x+α2sin2 x)dx,则φ(1)=0,φ(a)=I,因为∂∂α[ln(cos2 x+α2sin2 x)]= 2αsin2 xcos2 x+α2sin2 x,所以φ′(α)=∫π202αsin2 xcos2 x+α2sin2 xdx, 令u=tan x,则上式=2α∫+∞0u21+α2u2⋅du1+u2=2αα2−1[∫+∞0du1+u2−∫+∞0du1+α2u2] (α≠1)= 2αα2−1(π2−π2α)=πα+1,当α=1时,φ′(1)=∫π202sin2 xcos2 x+sin2 xdx=∫π202sin2 xdx=π2, 因此φ′(α)在x=1处连续,对任一a>0,φ′(α)在区间[1, a]或[a, 1]上连续,则 I=φ(a)−φ(1)=∫a1φ′(α)dα=∫a1πα+1dα=πlna+12.
(
1
)
∫
0
1
a
r
c
t
a
n
x
x
d
x
1
−
x
2
;
(
2
)
∫
0
1
s
i
n
(
l
n
1
x
)
x
b
−
x
a
l
n
x
d
x
(
0
<
a
<
b
)
.
(1) ∫10arctan xxdx√1−x2; (2) ∫10sin (ln 1x)xb−xaln xdx (0<a<b).
(
1
)
因
为
a
r
c
t
a
n
x
x
=
∫
0
1
d
y
1
+
x
2
y
2
,
所
以
∫
0
1
a
r
c
t
a
n
x
x
d
x
1
−
x
2
=
∫
0
1
(
∫
0
1
d
y
1
+
x
2
y
2
)
d
x
1
−
x
2
=
∫
0
1
[
∫
0
1
d
x
(
1
+
x
2
y
2
)
1
−
x
2
]
d
y
,
令
x
=
s
i
n
t
,
则
∫
0
1
d
x
(
1
+
x
2
y
2
)
1
−
x
2
=
∫
0
π
2
d
t
1
+
y
2
s
i
n
2
t
,
令
u
=
t
a
n
t
,
则
上
式
=
∫
0
+
∞
d
u
1
+
(
1
+
y
2
)
u
2
=
1
1
+
y
2
[
a
r
c
t
a
n
(
1
+
y
2
u
)
]
0
+
∞
=
π
2
1
+
y
2
,
因
此
∫
0
1
[
∫
0
1
d
x
(
1
+
x
2
y
2
)
1
−
x
2
]
d
y
=
∫
0
1
π
2
1
+
y
2
d
y
=
π
2
[
l
n
(
y
+
1
+
y
2
)
]
0
1
=
π
2
l
n
(
1
+
2
)
.
(
2
)
因
为
x
b
−
x
a
l
n
x
=
∫
a
b
x
y
d
y
,
所
以
∫
0
1
s
i
n
(
l
n
1
x
)
x
b
−
x
a
l
n
x
d
x
=
∫
0
1
s
i
n
(
l
n
1
x
)
d
x
∫
a
b
x
y
d
y
=
∫
a
b
d
y
∫
0
1
s
i
n
(
l
n
1
x
)
x
y
d
x
,
令
x
=
e
−
t
,
则
∫
0
1
s
i
n
(
l
n
1
x
)
x
y
d
x
=
∫
+
∞
0
s
i
n
t
⋅
e
−
y
t
(
−
e
−
t
)
d
t
=
∫
0
+
∞
s
i
n
t
⋅
e
−
(
y
+
1
)
t
d
t
=
1
1
+
(
y
+
1
)
2
e
−
(
y
+
1
)
t
[
c
o
s
t
−
(
y
+
1
)
s
i
n
t
]
∣
0
+
∞
=
1
1
+
(
y
+
1
)
2
,
因
此
∫
a
b
d
y
∫
0
1
s
i
n
(
l
n
1
x
)
x
y
d
x
=
∫
a
b
1
1
+
(
y
+
1
)
2
d
y
=
[
a
r
c
t
a
n
(
y
+
1
)
]
a
b
=
a
r
c
t
a
n
(
b
+
1
)
−
a
r
c
t
a
n
(
a
+
1
)
.
(1) 因为arctan xx=∫10dy1+x2y2,所以∫10arctan xxdx√1−x2=∫10(∫10dy1+x2y2)dx√1−x2= ∫10[∫10dx(1+x2y2)√1−x2]dy,令x=sin t,则∫10dx(1+x2y2)√1−x2=∫π20dt1+y2sin2 t, 令u=tan t,则上式=∫+∞0du1+(1+y2)u2=1√1+y2[arctan(√1+y2u)]+∞0=π2√1+y2, 因此∫10[∫10dx(1+x2y2)√1−x2]dy=∫10π2√1+y2dy=π2[ln(y+√1+y2)]10=π2ln(1+√2). (2) 因为xb−xaln x=∫baxydy,所以∫10sin(ln1x)xb−xaln xdx=∫10sin(ln 1x)dx∫baxydy= ∫bady∫10sin(ln 1x)xydx,令x=e−t,则∫10sin(ln 1x)xydx=∫0+∞sin t⋅e−yt(−e−t)dt= ∫+∞0sin t⋅e−(y+1)tdt=11+(y+1)2e−(y+1)t[cos t−(y+1)sin t]|+∞0=11+(y+1)2, 因此∫bady∫10sin(ln 1x)xydx=∫ba11+(y+1)2dy=[arctan(y+1)]ba=arctan(b+1)−arctan(a+1).