• 萤火虫模糊回归算法(Matlab代码实现)


     🍒🍒🍒欢迎关注🌈🌈🌈

    📝个人主页:我爱Matlab


    👍点赞➕评论➕收藏 == 养成习惯(一键三连)🌻🌻🌻

    🍌希望大家多多支持🍓~一起加油 🤗

    💬语录:将来的我一定会感谢现在奋斗的自己!

    🍁🥬🕒摘要🕒🥬🍁

    萤火虫算法模拟了萤火虫的自然现象。真实的萤火虫自然地呈现出一种离散的闪烁模式,而萤火虫算法假设它们总是在发光。为了模拟萤火虫的这种闪烁行为,Yang Xin-She提出了了三条规则(Yang,2009):
    (1)假设所有萤火虫都是雌雄同体的,因此一只萤火虫可能会被其他任何萤火虫吸引。
    (2)萤火虫的亮度决定其吸引力的大小,较亮的萤火虫吸引较暗的萤火虫。如果没有萤火虫比被考虑的萤火虫更亮,它就会随机移动。
    (3)函数的最优值与萤火虫的亮度成正比。

    ✨🔎⚡运行结果⚡🔎✨

     

    💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂
     

    clc;
    clear;
    warning('off');
    % Data Loading
    data=JustLoad();
    % Generate Fuzzy Model
    ClusNum=4; % Number of Clusters in FCM
    %
    fis=GenerateFuzzy(data,ClusNum);
    %
    %% Tarining FireFly Algorithm
    FireFlyFis=FireFlyRegression(fis,data);
           

    %% Plot Fuzzy FireFly Results (Train - Test)
    % Train Output Extraction
    TrTar=data.TrainTargets;
    TrainOutputs=evalfis(data.TrainInputs,FireFlyFis);
    % Test Output Extraction
    TsTar=data.TestTargets;
    TestOutputs=evalfis(data.TestInputs,FireFlyFis);
    % Train calc
    Errors=data.TrainTargets-TrainOutputs;
    MSE=mean(Errors.^2);RMSE=sqrt(MSE);  
    error_mean=mean(Errors);error_std=std(Errors);
    % Test calc
    Errors1=data.TestTargets-TestOutputs;
    MSE1=mean(Errors1.^2);RMSE1=sqrt(MSE1);  
    error_mean1=mean(Errors1);error_std1=std(Errors1);
    % Train
    figure('units','normalized','outerposition',[0 0 1 1])
    subplot(3,2,1);
    plot(data.TrainTargets,'c');hold on;
    plot(TrainOutputs,'k');legend('Target','Output');
    title('FireFly Training Part');xlabel('Sample Index');grid on;
    % Test
    subplot(3,2,2);
    plot(data.TestTargets,'c');hold on;
    plot(TestOutputs,'k');legend('FireFly Target','FireFly Output');
    title('FireFly Testing Part');xlabel('Sample Index');grid on;
    % Train
    subplot(3,2,3);
    plot(Errors,'k');legend('FireFly Training Error');
    title(['Train MSE =     ' num2str(MSE) '  ,     Train RMSE =     ' num2str(RMSE)]);grid on;
    % Test
    subplot(3,2,4);
    plot(Errors1,'k');legend('FireFly Testing Error');
    title(['Test MSE =     ' num2str(MSE1) '  ,    Test RMSE =     ' num2str(RMSE1)]);grid on;
    % Train
    subplot(3,2,5);
    h=histfit(Errors, 50);h(1).FaceColor = [.8 .8 0.3];
    title(['Train Error Mean =   ' num2str(error_mean) '  ,   Train Error STD =   ' num2str(error_std)]);
    % Test
    subplot(3,2,6);
    h=histfit(Errors1, 50);h(1).FaceColor = [.8 .8 0.3];
    title(['Test Error Mean =   ' num2str(error_mean1) '  ,   Test Error STD =    ' num2str(error_std1)]);

    %% Plot Just Fuzzy Results (Train - Test)
    % Train Output Extraction
    fTrainOutputs=evalfis(data.TrainInputs,fis);
    % Test Output Extraction
    fTestOutputs=evalfis(data.TestInputs,fis);
    % Train calc
    fErrors=data.TrainTargets-fTrainOutputs;
    fMSE=mean(fErrors.^2);fRMSE=sqrt(fMSE);  
    ferror_mean=mean(fErrors);ferror_std=std(fErrors);
    % Test calc
    fErrors1=data.TestTargets-fTestOutputs;
    fMSE1=mean(fErrors1.^2);fRMSE1=sqrt(fMSE1);  
    ferror_mean1=mean(fErrors1);ferror_std1=std(fErrors1);
    % Train
    figure('units','normalized','outerposition',[0 0 1 1])
    subplot(3,2,1);
    plot(data.TrainTargets,'m');hold on;
    plot(fTrainOutputs,'k');legend('Target','Output');
    title('Fuzzy Training Part');xlabel('Sample Index');grid on;
    % Test
    subplot(3,2,2);
    plot(data.TestTargets,'m');hold on;
    plot(fTestOutputs,'k');legend('Target','Output');
    title('Fuzzy Testing Part');xlabel('Sample Index');grid on;
    % Train
    subplot(3,2,3);
    plot(fErrors,'g');legend('Fuzzy Training Error');
    title(['Train MSE =     ' num2str(fMSE) '   ,    Test RMSE =     ' num2str(fRMSE)]);grid on;
    % Test
    subplot(3,2,4);
    plot(fErrors1,'g');legend('Fuzzy Testing Error');
    title(['Train MSE =     ' num2str(fMSE1) '   ,    Test RMSE =     ' num2str(fRMSE1)]);grid on;
    % Train
    subplot(3,2,5);
    h=histfit(fErrors, 50);h(1).FaceColor = [.3 .8 0.3];
    title(['Train Error Mean =    ' num2str(ferror_mean) '   ,   Train Error STD =    ' num2str(ferror_std)]);
    % Test
    subplot(3,2,6);
    h=histfit(fErrors1, 50);h(1).FaceColor = [.3 .8 0.3];
    title(['Test Error Mean =    ' num2str(ferror_mean1) '   ,   Test Error STD =    ' num2str(ferror_std1)]);

    %% Regression Plots
    figure('units','normalized','outerposition',[0 0 1 1])
    subplot(2,2,1)
    [population2,gof] = fit(TrTar,TrainOutputs,'poly4');
    plot(TrTar,TrainOutputs,'o',...
        'LineWidth',1,...
        'MarkerSize',6,...
        'MarkerEdgeColor','g',...
        'MarkerFaceColor',[0.9,0.1,0.1]);
        title(['FireFly Train - R =  ' num2str(1-gof.rmse)]);
            xlabel('Train Target');
        ylabel('Train Output');   
    hold on
    plot(population2,'b-','predobs');
        xlabel('Train Target');
        ylabel('Train Output');   
    hold off
    subplot(2,2,2)
    [population2,gof] = fit(TsTar, TestOutputs,'poly4');
    plot(TsTar, TestOutputs,'o',...
        'LineWidth',1,...
        'MarkerSize',6,...
        'MarkerEdgeColor','g',...
        'MarkerFaceColor',[0.9,0.1,0.1]);
        title(['FireFly Test - R =  ' num2str(1-gof.rmse)]);
        xlabel('Test Target');
        ylabel('Test Output');    
    hold on
    plot(population2,'b-','predobs');
        xlabel('Test Target');
        ylabel('Test Output');
     hold off
    subplot(2,2,3)
    [population2,gof] = fit(TrTar,fTrainOutputs,'poly4');
    plot(TrTar,fTrainOutputs,'o',...
        'LineWidth',1,...
        'MarkerSize',6,...
        'MarkerEdgeColor','b',...
        'MarkerFaceColor',[0.3,0.9,0.2]);
        title(['Fuzzy Train - R =  ' num2str(1-gof.rmse)]);
            xlabel('Train Target');
        ylabel('Train Output');   
    hold on
    plot(population2,'r-','predobs');
        xlabel('Train Target');
        ylabel('Train Output');   
    hold off
    subplot(2,2,4)
    [population2,gof] = fit(TsTar, fTestOutputs,'poly4');
    plot(TsTar, fTestOutputs,'o',...
        'LineWidth',1,...
        'MarkerSize',6,...
        'MarkerEdgeColor','b',...
        'MarkerFaceColor',[0.3,0.9,0.2]);
        title(['Fuzzy Test - R =  ' num2str(1-gof.rmse)]);
        xlabel('Test Target');
        ylabel('Test Output');    
    hold on
    plot(population2,'r-','predobs');
        xlabel('Test Target');
        ylabel('Test Output');
     hold off

    📜📢🌈参考文献🌈📢📜

    [1]王昕, 黄柯, 郑益慧,等. 基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J]. 电网技术, 2017, 41(2):7.

  • 相关阅读:
    UE4创建一个左右摇摆的“喷泉”
    【Arduino+ESP32专题】模拟I/O的使用——PWM
    2023数维杯国际赛数学建模C题思路模型
    Gradle多模块项目配置
    【SparkSQL】数据的加载和保存、项目实战
    电子学会C++编程等级考试2023年05月(二级)真题解析
    【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础
    APT攻击与防范
    微波通信的分类
    Python中requests模块源码分析:requests是如何调用urllib3的
  • 原文地址:https://blog.csdn.net/weixin_66436111/article/details/128117699