码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • Difference quotient


    In single-variable calculus, the difference quotient is usually the name for the expression

    {\displaystyle {\frac {f(x+h)-f(x)}{h}}}{\frac {f(x+h)-f(x)}{h}}
    which when taken to the limit as h approaches 0 gives the derivative of the function f.[1][2][3][4] The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case).[5][6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).[7][8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.[9]

    By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient

    {\displaystyle {\frac {f(b)-f(a)}{b-a}}}{\frac {f(b)-f(a)}{b-a}}
    is called[5] the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval.[5] Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).[10]

    Difference quotients are used as approximations in numerical differentiation,[8] but they have also been subject of criticism in this application.[11]

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.

    The difference quotient is sometimes also called the Newton quotient[10][12][13][14] (after Isaac Newton) or Fermat’s difference quotient (after Pierre de Fermat).[15]

    Contents

    • 1 Overview
    • 2 Defining the point range
    • 3 The primary difference quotient (Ń = 1)
      • 3.1 As a derivative
      • 3.2 As a divided difference
    • 4 Higher-order difference quotients
      • 4.1 Second order
      • 4.2 Third order
      • 4.3 Nth order
    • 5 Applying the divided difference
    • 6 See also

    1 Overview

    2 Defining the point range

    3 The primary difference quotient (Ń = 1)

    3.1 As a derivative

    3.2 As a divided difference

    4 Higher-order difference quotients

    4.1 Second order

    4.2 Third order

    4.3 Nth order

    5 Applying the divided difference

    6 See also

  • 相关阅读:
    5G NR preamble生成原理
    js【详解】数据类型原理(含变量赋值详解-浅拷贝)
    基于SpringBoot+Vue的在线外卖管理系统
    普通话水平测试用朗读作品60篇-(练习版)
    java-php-python-ssm基于内容的校园热点新闻推送网站计算机毕业设计
    管理类联考——数学——汇总篇——知识点突破——数据分析——记忆
    日期相关整理
    大厂纷纷调整员工福利:快手取消免费三餐,新浪为员工父母配30万重疾险
    机器学习初步-笔记
    冰点还原精灵DeepFreeze重启后图标不见了
  • 原文地址:https://blog.csdn.net/qq_66485519/article/details/128123086
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号