• 【STM32笔记】HAL库中的SPI传输(可利用中断或DMA进行连续传输)


    STM32】HAL库中的SPI传输(可利用中断或DMA进行连续传输)

    SPI传输

    SPI 是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola(摩托罗拉)首先在其MC68HCXX系列处理器上定义的。

    SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

    SPI主从模式

    SPI分为主、从两种模式,一个SPI通讯系统需要包含一个(且只能是一个)主设备,一个或多个从设备。提供时钟的为主设备(Master),接收时钟的设备为从设备(Slave),SPI接口的读写操作,都是由主设备发起。当存在多个从设备时,通过各自的片选信号进行管理。

    SPI是全双工且SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps

    SPI信号线

    SPI接口一般使用四条信号线通信:
    SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)

    MISO: 主设备输入/从设备输出引脚。该引脚在从模式下发送数据,在主模式下接收数据。
    MOSI: 主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。
    SCLK:串行时钟信号,由主设备产生。
    CS/SS:从设备片选信号,由主设备控制。它的功能是用来作为“片选引脚”,也就是选择指定的从设备,让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。
    硬件上为4根线。

    四线SPI可以同时发送和接收数据

    另外,还有一种三线SPI,即SCLK、CS、DIO,通过DIO一条线实现MISO和MOSI的功能,三线SPI同时发送或接收

    SPI协议可以一对多传输 拉低哪个CS就同哪个芯片通信
    在这里插入图片描述
    在这里插入图片描述

    SPI工作模式

    根据时钟极性(CPOL)及相位(CPHA)不同,SPI有四种工作模式。
    时钟极性(CPOL)定义了时钟空闲状态电平:

    CPOL=0为时钟空闲时为低电平
    CPOL=1为时钟空闲时为高电平
    时钟相位(CPHA)定义数据的采集时间。

    CPHA=0:在时钟的第一个跳变沿(上升沿或下降沿)进行数据采样。
    CPHA=1:在时钟的第二个跳变沿(上升沿或下降沿)进行数据采样。
    在这里插入图片描述

    SPI通信的时序

    在这里插入图片描述
    传输一个字节
    在这里插入图片描述
    如图为传输一个24位的数据 在此期间片选SYNC一直为拉低的

    SPI配置

    在这里插入图片描述
    这是一般情况的配置
    SPI配置中设置数据长度为8bit,MSB先输出分频为64分频,则波特率为125KBits/s。其他为默认设置。
    Motorla格式,CPOL设置为Low,CPHA设置为第二个边沿。不开启CRC检验,NSS为软件控制。
    (CPOL=0,CPHA=1)

    CRC根据设备需求来
    NSS片选这里选择的是软件片选(GPIO设置为输出,由GPIO控制拉高拉低) 之所以推荐这个配置 后面会详细说明
    CPOL和CPHA根据芯片来定
    工作模式选择全双工

    有主机模式全双工/半双工
    从机模式全双工/半双工
    只接收主机模式/只接收从机模式
    只发送主机模式

    SPI函数

    在stm32f1xx_hal_spi.h头文件中可以看到spi的操作函数。分别对应轮询,中断和DMA三种控制方式。
    在这里插入图片描述
    轮询: 最基本的发送接收函数,就是正常的发送数据和接收数据(阻塞)
    中断: 在SPI发送或者接收完成的时候,会进入SPI回调函数,用户可以编写回调函数,实现设定功能(非阻塞)
    DMA: DMA传输SPI数据(非阻塞)

    利用SPI接口发送和接收数据主要调用以下两个函数:

    HAL_StatusTypeDef  HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//发送数据
    HAL_StatusTypeDef  HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//接收数据
    
    • 1
    • 2

    SPI发送数据函数:

    HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//发送数据
    
    • 1

    参数:

    *hspi: 选择SPI1/2,比如&hspi1,&hspi2
    *pData : 需要发送的数据,可以为数组
    Size: 发送数据的字节数,1 就是发送一个字节数据
    Timeout: 超时时间,就是执行发送函数最长的时间,超过该时间自动退出发送函数
    SPI接收数据函数:

    HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//接收数据
    
    • 1

    参数:

    *hspi: 选择SPI1/2,比如&hspi1,&hspi2
    *pData : 接收发送过来的数据的数组
    Size: 接收数据的字节数,1 就是接收一个字节数据
    Timeout: 超时时间,就是执行接收函数最长的时间,超过该时间自动退出接收函数
    SPI接收回调函数:

    HAL_SPI_TransmitReceive_IT(&hspi1, TXbuf,RXbuf,CommSize);
    
    • 1

    当SPI上接收出现了 CommSize个字节的数据后,中断函数会调用SPI回调函数:

    HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
    
    • 1

    用户可以重新定义回调函数,编写预定功能即可,在接收完成之后便会进入回调函数

    另外,最常用又最方便的是:

    HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size,uint32_t Timeout)
    
    • 1

    此函数可以同时发送和接收
    比如发送2个字节而后又接收3个字节,则Size=5(实际上发送5个字节,在发送2个字节后,开始接收3个字节)
    若要发送2个字节的同时接收2个字节,则Size=2
    若要发送2个字节,但在发送1个字节后接收一个字节,则Size=2

    在这里 发送和接收同时进行,根据需求 Size填入的值为时序的总长度

    注意!!!!
    这里的TX和RX不能共用一个Buf
    不然就会出现发送不了字节的情况

    SPI连续传输

    在HAL库中,SPI的传输是不连续的
    若是选择硬件NSS,则每次发送一个字节后,NSS都会拉高
    所以我们选择软件NSS,这样就可以在完成传输后手动拉高

    另外,若CPHA设置为1edge,则默认开启NSSP,在每次传输1个字节后,都会有一段空闲,设置为2或关闭NSSP则没有
    如图:
    在这里插入图片描述
    若是用阻塞的方式进行传输,则每传输完两个字节后会有一个空闲,如图:
    在这里插入图片描述
    为了使每两个字节传输中不间隔(连续传输)
    则使用HAL_SPI_TransmitReceive_IT或HAL_SPI_TransmitReceive_DMA(这两个函数传参完全一致,中断只适用于低速SPI,DMA全都适用)
    同时在cubemx中开启中断或DMA(两者选其一就好,DMA选择普通模式,开启TX和RX)
    (其实说白了 DMA也算中断的一种 DMA不经过CPU传输 发送完成以后也会进入DMA中断回调函数)
    在这里插入图片描述

    在这里插入图片描述

    由于这两个函数为非阻塞 固在使用时要加上阻塞判断

    HAL_SPI_TransmitReceive_IT(hspi,pData,buf,x+y);
    while(hspi->State!=HAL_SPI_STATE_READY);
    Set_SPI_CS(hspi,GPIO_PIN_SET);
    
    • 1
    • 2
    • 3

    若不加 软件片选会变成这样:
    在这里插入图片描述

    SPI函数包装如下:

    /*!
     * @brief       	对SPI设备进行发送和读取
     *
     * @param 	[in]	hspi: SPI_HandleTypeDef 变量地址
     *					[in]	pData: 需要发送的数据变量地址
     *					[in]	x: 发送数据个数
     *					[in]	y: 读取数据个数,最大为4,若大于4,则返回0
     *					[in]	us: 拉高CS后的延时时长
     *					[in]	sync_flag: 同步标志
     *								当sync_flag为true时,发送数据和读取数据同时进行,片选始终拉低,接收的数据为发送x个数据以后接收的y个数据
     *								当sync_flag为false时,发送数据和读取数据分别进行,片选分两次拉低,接收的数据为第二次片选拉低时的数据
     *
     * @return				dat: SPI读取数据返回
     */
    uint32_t SPI_Send_x_Read_y(SPI_HandleTypeDef *hspi, uint8_t *pData, uint8_t x,uint8_t y,uint8_t us,bool sync_flag)
    {	
    	Set_SPI_CS(hspi,GPIO_PIN_SET);
    	
    	uint8_t buf[x+y];
    	memset(buf,0,sizeof(buf));
    	uint32_t dat=0;
    	
    	if(y>4 || x+y==0)
    	{
    		return 0;
    	}
    	
    	if(sync_flag)
    	{
    		Set_SPI_CS(hspi,GPIO_PIN_RESET);
    		if(pData!=NULL)
    		{
    			HAL_SPI_TransmitReceive_IT(hspi,pData,buf,x+y);
    			while(hspi->State!=HAL_SPI_STATE_READY);
    			Set_SPI_CS(hspi,GPIO_PIN_SET);
    			delay_us(us);
    		}
    		else
    		{
    			Set_SPI_CS(hspi,GPIO_PIN_SET);
    			delay_us(us);
    			return 0;
    		}		
    	}
    	else
    	{		
    		if(pData!=NULL && x!=0)
    		{
    			Set_SPI_CS(hspi,GPIO_PIN_RESET);
    			HAL_SPI_Transmit_IT(hspi,pData,x);
    			while(hspi->State!=HAL_SPI_STATE_READY);
    			Set_SPI_CS(hspi,GPIO_PIN_SET);
    			delay_us(us);
    		}
    		Set_SPI_CS(hspi,GPIO_PIN_RESET);
    		HAL_SPI_Receive_IT(hspi,buf,y);
    		while(hspi->State!=HAL_SPI_STATE_READY);
    		Set_SPI_CS(hspi,GPIO_PIN_SET);
    		delay_us(us);
    		x=0;
    	}
    	
    	for(uint8_t i=0;i<y;i++)
    	{
    		dat|=buf[x+i]<<(8*(y-1-i));
    	}
    	
    	Set_SPI_CS(hspi,GPIO_PIN_SET);
    	
    	return dat;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71

    连续传输后的时序如图:
    在这里插入图片描述
    软件片选中的拉高延迟50us,是为了满足有的设备对片选拉高时长的要求 50us可以满足大多数设备了

    另外,传输完成的拉高也可以放在IT和DMA的回调中去,但是回调也是非阻塞的,若是两次数据间隔时间长,则可以这样使用,这样就可以压缩CS的时间。但如果两次数据间隔很短,就要按刚刚说的软件片选拉高后给延时,如果用回调的话,延时部分会被压缩,原本延时50us,可能只能延时40us,所以尽量不用这个。

    void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
    {  
    	Set_SPI_CS(hspi,GPIO_PIN_SET);
    	if (hspi == (&hspi2))
    	{
    
    	}	
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    高速传输下的连续传输

    我通过PLL分频到Systick为50MHz
    在这里插入图片描述
    SPI时钟分频如果为4的话 就是12.5MHz
    实测发现 用普通传输方式和中断传输方式 在12.5MHz及以上的时钟频率进行传输时
    会出现两个字节一组传输的情况
    在这里插入图片描述
    分频为8(速率降到6.25MHz及以下)时 不会出现该情况

    但是 采用DMA无论低速高速均不会造成问题
    在这里插入图片描述

    所以 我建议是高速使用DMA 低速使用中断的方式来连续传输

    附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作

    SysTick系统定时器精准延时

    延时函数

    SysTick->LOAD中的值为计数值
    计算方法为工作频率值/分频值
    比如工作频率/1000 则周期为1ms

    以ADuCM4050为例:

    #include "ADuCM4050.h"
    
    void delay_ms(unsigned int ms)
    {
    	SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
    	while(ms--)
    	{
    		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    	}
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    void delay_us(unsigned int us)
    {
    	SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
    	while(us--)
    	{
    		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    	}
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍

    Cortex-M架构SysTick系统定时器阻塞和非阻塞延时

    阻塞延时

    首先是最常用的阻塞延时

    void delay_ms(unsigned int ms)
    {
    	SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    	while(ms--)
    	{
    		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    	}
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    void delay_us(unsigned int us)
    {
    	SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    	while(us--)
    	{
    		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    	}
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    50000000表示工作频率
    分频后即可得到不同的延时时间
    以此类推

    那么 不用两个嵌套while循环 也可以写成:

    void delay_ms(unsigned int ms)
    {
    	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    
    	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    void delay_us(unsigned int us)
    {
    	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    	
    	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    
    	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    但是这种写法有个弊端
    那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作

    而LOAD如果最大是32位 也就是4294967295

    晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s

    固最大定时时间为85s

    但用嵌套while的话 最大可以支持定时4294967295*85s

    非阻塞延时

    如果采用非阻塞的话 直接改写第二种方法就好了:

    void delay_ms(unsigned int ms)
    {
    	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    
    	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    
    	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    void delay_us(unsigned int us)
    {
    	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
    	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
    	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
    	
    	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
    
    	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    将等待和关闭定时器语句去掉
    在使用时加上判断即可变为阻塞:

    delay_ms(500);
    while ((SysTick->CTRL & 0x00010000)==0);
    SysTick->CTRL = 0;
    
    • 1
    • 2
    • 3

    在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待

    不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下

    故可以通过内部定时器来进行非阻塞延时函数的编写

    基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了

    位带操作

    位带代码

    M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
    M0架构的单片机 其输出口地址为端口地址+12 输入为+8
    以ADuCM4050为列:

    位带宏定义
    #ifndef __GPIO_H__
    #define __GPIO_H__
    #include "ADuCM4050.h"
    #include "adi_gpio.h"
    
    #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
    #define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
    #define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))
    
    #define GPIO0_ODR_Addr    (ADI_GPIO0_BASE+20) //0x40020014
    #define GPIO0_IDR_Addr    (ADI_GPIO0_BASE+16) //0x40020010
    
    #define GPIO1_ODR_Addr    (ADI_GPIO1_BASE+20) //0x40020054
    #define GPIO1_IDR_Addr    (ADI_GPIO1_BASE+16) //0x40020050
    
    #define GPIO2_ODR_Addr    (ADI_GPIO2_BASE+20) //0x40020094
    #define GPIO2_IDR_Addr    (ADI_GPIO2_BASE+16) //0x40020090
    
    #define GPIO3_ODR_Addr    (ADI_GPIO3_BASE+20) //0x400200D4
    #define GPIO3_IDR_Addr    (ADI_GPIO3_BASE+16) //0x400200D0
    
    #define P0_O(n)   	BIT_ADDR(GPIO0_ODR_Addr,n)  //输出 
    #define P0_I(n)    	BIT_ADDR(GPIO0_IDR_Addr,n)  //输入 
    
    #define P1_O(n)   	BIT_ADDR(GPIO1_ODR_Addr,n)  //输出 
    #define P1_I(n)    	BIT_ADDR(GPIO1_IDR_Addr,n)  //输入 
    
    #define P2_O(n)   	BIT_ADDR(GPIO2_ODR_Addr,n)  //输出 
    #define P2_I(n)    	BIT_ADDR(GPIO2_IDR_Addr,n)  //输入 
    
    #define P3_O(n)   	BIT_ADDR(GPIO3_ODR_Addr,n)  //输出 
    #define P3_I(n)    	BIT_ADDR(GPIO3_IDR_Addr,n)  //输入 
    
    #define Port0			(ADI_GPIO_PORT0)
    #define Port1			(ADI_GPIO_PORT1)
    #define Port2			(ADI_GPIO_PORT2)
    #define Port3			(ADI_GPIO_PORT3)
    
    #define Pin0			(ADI_GPIO_PIN_0)
    #define Pin1			(ADI_GPIO_PIN_1)
    #define Pin2			(ADI_GPIO_PIN_2)
    #define Pin3			(ADI_GPIO_PIN_3)
    #define Pin4			(ADI_GPIO_PIN_4)
    #define Pin5			(ADI_GPIO_PIN_5)
    #define Pin6			(ADI_GPIO_PIN_6)
    #define Pin7			(ADI_GPIO_PIN_7)
    #define Pin8			(ADI_GPIO_PIN_8)
    #define Pin9			(ADI_GPIO_PIN_9)
    #define Pin10			(ADI_GPIO_PIN_10)
    #define Pin11			(ADI_GPIO_PIN_11)
    #define Pin12			(ADI_GPIO_PIN_12)
    #define Pin13			(ADI_GPIO_PIN_13)
    #define Pin14			(ADI_GPIO_PIN_14)
    #define Pin15			(ADI_GPIO_PIN_15)
    
    void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
    void GPIO_BUS_OUT(unsigned int port,unsigned int num);
    
    void P0_BUS_O(unsigned int num);
    unsigned int P0_BUS_I(void);
    
    void P1_BUS_O(unsigned int num);
    unsigned int P1_BUS_I(void);
    
    void P2_BUS_O(unsigned int num);
    unsigned int P2_BUS_I(void);
    
    void P3_BUS_O(unsigned int num);
    unsigned int P3_BUS_I(void);
    
    #endif
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    总线函数
    #include "ADuCM4050.h"
    #include "adi_gpio.h"
    #include "GPIO.h"
    
    void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
    {
    	switch(port)
    	{
    		case 0:{
    			switch(pin)
    			{
    				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;
    				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;
    				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;
    				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;
    				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;
    				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;
    				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;
    				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;
    				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;
    				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;
    				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;
    				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;
    				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;
    				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;
    				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;
    				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;
    				default:pin=0;break;
    			}
    		}break;
    		
    		case 1:{
    			switch(pin)
    			{
    				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;
    				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;
    				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;
    				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;
    				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;
    				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;
    				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;
    				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;
    				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;
    				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;
    				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;
    				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;
    				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;
    				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;
    				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;
    				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;
    				default:pin=0;break;
    			}
    		}break;
    		
    		case 2:{
    			switch(pin)
    			{
    				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;
    				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;
    				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;
    				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;
    				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;
    				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;
    				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;
    				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;
    				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;
    				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;
    				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;
    				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;
    				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;
    				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;
    				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;
    				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;
    				default:pin=0;break;
    			}
    		}break;
    		
    		case 3:{
    			switch(pin)
    			{
    				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;
    				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;
    				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;
    				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;
    				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;
    				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;
    				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;
    				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;
    				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;
    				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;
    				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;
    				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;
    				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;
    				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;
    				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;
    				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;
    				default:pin=0;break;
    			}
    		}break;
    		
    		default:port=0;break;
    	}	
    }
    
    void GPIO_BUS_OUT(unsigned int port,unsigned int num)  //num最大为0xffff
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		GPIO_OUT(port,i,(num>>i)&0x0001);
    	}
    }
    
    
    void P0_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		P0_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int P0_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(P0_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void P1_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		P1_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int P1_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(P1_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void P2_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		P2_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int P2_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(P2_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void P3_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		P3_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int P3_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(P3_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190

    一、位带操作理论及实践

    位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版

    位带区: 支持位带操作的地址区

    位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)

    位带操作对于硬件 I/O 密集型的底层程序最有用处

    支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。

    位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
    STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。
    在这里插入图片描述
    (1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
    (2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)

    只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行

    在这里插入图片描述

    要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
    1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
    2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
    3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。

    关于GPIO引脚对应的访问地址,可以参考以下公式
    寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

    如:端口F访问的起始地址GPIOF_BASE

    #define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)

    在这里插入图片描述

    但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可

    例如:

    GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14

    寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

    设置PF9引脚的话:

    uint32_t *PF9_BitBand =
    *(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)
    
    
    • 1
    • 2
    • 3

    封装一下:

    #define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)
    
    
    • 1
    • 2

    现在 可以把通用部分封装成一个小定义:

    #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
    #define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
    #define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))
    
    • 1
    • 2
    • 3

    那么 设置PF引脚的函数可以定义:

    #define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414   
    #define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
    
    #define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
    #define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入
    
    • 1
    • 2
    • 3
    • 4
    • 5

    若使PF9输入输出则:

    PF_O(9)=1;  //输出高电平
    uint8_t dat = PF_I(9);  //获取PF9引脚的值
    
    • 1
    • 2

    总线输入输出:

    void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PF_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PF_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    STM32的可用下面的函数:

    #ifndef __GPIO_H__
    #define __GPIO_H__
    #include "stm32l496xx.h"
    
    #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
    #define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
    #define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))
    
    #define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
    #define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
    #define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
    #define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
    #define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
    #define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
    #define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
    #define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
    #define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     
    
    #define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
    #define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
    #define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
    #define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
    #define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
    #define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
    #define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
    #define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
    #define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 
     
    #define PA_O(n)   	BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
    #define PA_I(n)    	BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 
    
    #define PB_O(n)   	BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
    #define PB_I(n)    	BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 
    
    #define PC_O(n)   	BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
    #define PC_I(n)    	BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 
    
    #define PD_O(n)   	BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
    #define PD_I(n)    	BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 
    
    #define PE_O(n)   	BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
    #define PE_I(n)    	BIT_ADDR(GPIOE_IDR_Addr,n)  //输入
    
    #define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
    #define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入
    
    #define PG_O(n)   	BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
    #define PG_I(n)    	BIT_ADDR(GPIOG_IDR_Addr,n)  //输入
    
    #define PH_O(n)   	BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
    #define PH_I(n)    	BIT_ADDR(GPIOH_IDR_Addr,n)  //输入
    
    #define PI_O(n)			BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
    #define PI_I(n)   	BIT_ADDR(GPIOI_IDR_Addr,n)  //输入
    
    void PA_BUS_O(unsigned int num);
    unsigned int PA_BUS_I(void);
    
    void PB_BUS_O(unsigned int num);
    unsigned int PB_BUS_I(void);
    
    void PC_BUS_O(unsigned int num);
    unsigned int PC_BUS_I(void);
    
    void PD_BUS_O(unsigned int num);
    unsigned int PD_BUS_I(void);
    
    void PE_BUS_O(unsigned int num);
    unsigned int PE_BUS_I(void);
    
    void PF_BUS_O(unsigned int num);
    unsigned int PF_BUS_I(void);
    
    void PG_BUS_O(unsigned int num);
    unsigned int PG_BUS_I(void);
    
    void PH_BUS_O(unsigned int num);
    unsigned int PH_BUS_I(void);
    
    void PI_BUS_O(unsigned int num);
    unsigned int PI_BUS_I(void);
    
    #endif
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    #include "GPIO.h"
    
    void PA_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PA_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PA_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PA_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PB_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PB_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PB_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PB_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PC_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PC_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PC_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PC_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PD_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PD_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PD_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PD_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PE_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PE_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PE_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PE_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PF_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PF_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PG_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PG_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PG_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PG_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PH_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PH_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PH_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PH_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    void PI_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
    {
    	int i;
    	for(i=0;i<16;i++)
    	{
    		PI_O(i)=(num>>i)&0x0001;
    	}
    }
    unsigned int PI_BUS_I(void)  //输出值num最大为0xFFFF
    {
    	unsigned int num;
    	int i;
    	for(i=0;i<16;i++)
    	{
    		num=num+(PI_I(i)<<i)&0xFFFF;
    	}
    	return num;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173

    二、如何判断MCU的外设是否支持位带

    根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述
    在这里插入图片描述
    也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
    第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值

    位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
    像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改

    STM32L476的GPIO就不行:
    在这里插入图片描述
    AHB2的都不能用位带
    ABP 还有AHB1都可以用
    在这里插入图片描述
    但是L476的寄存器里面 GPIO和ADC都是AHB2

  • 相关阅读:
    【鸿蒙软件开发】文本显示(Text/Span)
    微信小程序实现预约生成二维码
    【考研数学】概率论与数理统计 —— 第四章 | 随机变量的数字特征
    【单片机毕业设计选题24005】-基于STM32的智能家居环境监测系统
    js实现鼠标拖拽改变div大小的同时另一个div宽度也变化
    HTTP 网络协议请求的消息结构,具体详解(2024-04-25)
    SkyWalking分布式链路追踪学习
    打造高效的分布式爬虫系统:利用Scrapy框架实现
    初识JAVA中的包装类,时间复杂度及空间复杂度
    前端设置env配置文件yaml/json格式 在项目中读取
  • 原文地址:https://blog.csdn.net/weixin_53403301/article/details/128116423