• RepVGG 核心讲解


    论文地址: RepVGG: Making VGG-style ConvNets Great Again (arxiv.org)

    主要贡献: 结构重参数化

    主要结构图

    在这里插入图片描述

    多分支模型的优势

    实验证明多分支模型可以更好的增加模型的表征能力,从而提高模型的准确度。文中作者分别试验了baseline, 增加 identity branch和增加 1 × 1 branch的准确度。

    在这里插入图片描述

    单路模型的优势

    RepVGG在训练时使用了多分枝模型进行训练,而在推理时使用了结构重参数化,将多分枝模型改为单路模型。

    优点

    1. 更快
      增加并行度。如果模型为多分支模型,不同的分支处理速度是不一样的,所以处理快的模块需要等待其他模块运算完后再进行后续的处理,这个时候就存在算力的浪费。

    2. 更省内存,多分支模型需要额外的内存保存不同分支的特征图。
      在这里插入图片描述

    3. 更加灵活
      多分支模型,需要各个分支的输出保持一致才能进行特征的相加,因此在对模型的修改上有一定的限制。同时,对于模型的剪枝工作而言,多分支网络普遍会存在性能大幅下降的问题。

    结构重参数化

    结构重参数化过程如下:

    1. 模型有三个分支,分别为 3×3 Conv + BN, 1×1 Conv + BN, BN,注意,因为有BN层的存在,所以这里的卷积层都不需要bias
    2. 结构重参数化第一步,将三个分支都变为3×3 Conv.
    3. 将3个 3×3 Conv 合并成1个 3×3 Conv.
      在这里插入图片描述

    1×1 Conv 转变成 3×3 Conv

    对 1×1 Conv 进行值为0的padding。同时,在转变后进行卷积操作就需要对输入特征进行padding,从而使得输入输出的特征图大小保持一致。

    在这里插入图片描述

    Identity 连接转变成 3×3 Conv:

    构建的卷积操作,使得输入输出的特征层不仅大小一致并且特征值也保持一致

    在这里插入图片描述

    Conv2d 和 BN 融合

    Batch Normalization的计算公式如下:
    y i = x i − μ i σ i 2 + ϵ ⋅ γ i + β i y_{i}=\frac{x_{i}-\mu_{i}}{\sqrt{\sigma_{i}^{2}+\epsilon}} \cdot \gamma_{i}+\beta_{i} yi=σi2+ϵ xiμiγi+βi

    RepVGG 给出的 Conv2d 和 BN融合的推导如下, M M M 为输入。

    bn ⁡ ( M , μ , σ , γ , β ) : , i , : , : = ( M : , i , : , : − μ i ) γ i σ i + β i W i , : , : , : ′ = γ i σ i   W i , : , : , : , b i ′ = − μ i γ i σ i + β i bn ⁡ ( M ∗   W , μ , σ , γ , β ) : , i , : , : = ( M ∗   W ′ ) : , i , : , : + b i ′ bn(M,μ,σ,γ,β):,i,:,:=(M:,i,:,:μi)σiγi+βiWi,:,:,:=σiγi Wi,:,:,:,bi=σiμiγi+βibn(M W,μ,σ,γ,β):,i,:,:=(M W):,i,:,:+bi
    Conv2d 和 BN 的融合后,相当于一个Conv2d。

    多分支融合

    O p t = ( I p t ⨂ W 1 + B 1 ) + ( I p t ⨂ W 2 + B 2 ) + ( I p t ⨂ W 3 + B 3 ) = I p t ⨂ ( W 1 + W 2 + W 3 ) + ( B 1 + B 2 + B 3 ) Opt=(IptW1+B1)+(IptW2+B2)+(IptW3+B3)=Ipt(W1+W2+W3)+(B1+B2+B3)

  • 相关阅读:
    简单了解下最近正火的SwissTable
    银行有没有必要建立数据中台?看完你就明白了
    【pytorch】关于OpenCV和PIL.Image读取图片的区别
    java计算机毕业设计高校运动会源码+数据库+系统+lw文档+部署
    springcloud
    邂逅【小程序】开发
    acwing周赛 排队问题--二分+单调栈的思想
    【技术美术实践部分】Unity Shader:学习顶点/片元着色器
    nodejs 之npm包
    性能测试需求分析
  • 原文地址:https://blog.csdn.net/leeyns/article/details/128104367