• 基于LSCF和LSFD算法在频域中识别快速实现的MIMO研究(Matlab代码实现)


     👨‍🎓个人主页:研学社的博客 

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

    🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

    ⛳️座右铭:行百里者,半于九十。

    📋📋📋本文目录如下:🎁🎁🎁

    目录

    💥1 概述

    📚2 运行结果

    🌈3 Matlab代码实现

    🎉4 参考文献


    💥1 概述

    本文使用MIMO系统的复杂频率响应函数(FRF)识别模态参数,特征频率,模态阻尼因子和模态残余。利用基于fft的正态方程的快速实现求解最小二乘问题,提高算法效率。

    该算法基于

    - 线性平方复频率估算器 (LSCF) 使用离散时间 z 模型来估计特征频率和模态阻尼。

    - 最小二乘频域估计器(LSFD),用于估计模态残差。

    识别顺序的选择和物理极点的选择由使用频率和阻尼收敛标准的稳定图辅助。然后可以自动解释稳定图。

    📚2 运行结果

    🌈3 Matlab代码实现

    部分代码:

    clear all
    close all
    clc

    % file test using 4 dofs system with proportional damping
    % for MPIFD_MIMO algorithm
    %
    % modal parameters of the analytical 4 dofs system
    %  -- f --   - xi -
    %   0.0494   0.0177
    %   0.1203   0.0104
    %   0.2037   0.0103
    %   0.3059   0.0122
    %
    % load frf in matrix form: one column = one FRF [3001x4]
    load('FRF_tot.mat')
    % load angular frequency in rad/s and in vector form [3001x1]
    load('omg_tot.mat')

    [nbl, nbc] = size(frf) ;

    % selection of the FRF range using frequency betwen 0.02 and 0.38 Hz
    [w1, frf1] = select_frf(w, frf, 0.02,  0.38) ;

    % FRFs plot with frequency range selection, all the next plot will be plotted in
    % figure 1 (stabilization chart, modal FRF, poles).
    figure(1)
    hold on
    frf1log = 20*log10(abs(frf1)) ;
    plot(w1/2/pi, frf1log,'LineWidth', 2)


    % identification using stabilization chart between order 2 and 20
    order = 2:20 ;
    [fn, xin, frfnumtot, FST, FF, XIXI, MATHP] = lscf(w1, frf1, order) ;
    % plot stabilization chart
    plotstabchart(w1, frf1, FST, FF, XIXI, MATHP, order) ;

    % selection of stable poles using stabilization chart, returns poles repeated 
    % nbit = 6 times in the tolerance interval tolf = 0.01.
    [fns, xins] = select_stabchart(fn, xin, FST, 0.01, 6) ;

    % calcul of residues and modal frf using selected poles and FRF between 
    % force and displacement ('disp') for the modes specified in idx
    idx = 1:4 ;
    [rntot, LRtot, URtot, frfmtot] = lsfd(w1, frf1, fns(idx), xins(idx), 'disp', 1) ;

    % add poles on the stabilization chart using round markers with color 
    % proportional to the modal damping factor value.
    add_poles(frf1(:,1), fns, xins)
     

    🎉4 参考文献

    部分理论来源于网络,如有侵权请联系删除。

    [1]Baptiste Chomette (2022). MIMO Modal Parameters Identification in Frequency Domain

  • 相关阅读:
    web前端期末大作业:基于HTML+CSS+JavaScript制作我的音乐网站(带设计报告)
    JavaScript if else语句
    多数据源配置代码
    Win7显示屏幕亮度在哪里可以调节
    二维码智慧门牌管理系统升级解决方案:采集项目的建立与运用
    分布式学习 - MPICH编译与实践
    VMware vSphere ESXI 6.7 U3封装RTL8125B网卡驱动
    CodeFormer和GFPGAN的本地部署与效果对比
    04-HotSpot 垃圾收集器
    git配置SSH 公钥
  • 原文地址:https://blog.csdn.net/weixin_46039719/article/details/128082374