• torchvision.models中模型编辑的requires_grad


    在对torchvision已有模型进行编辑的时候会保存已有训练结果,只针对编辑过的层进行训练,可以通过对requires_grad的赋值实现

    1. import torch
    2. import torchvision
    3. from torch import optim, nn
    4. def InitMode(mode_name):
    5. if mode_name == 'resnet152':
    6. return torchvision.models.resnet152(weights=torchvision.models.ResNet152_Weights.DEFAULT)
    7. elif mode_name == "resnet50":
    8. return torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.DEFAULT)
    9. elif mode_name == "vgg16":
    10. return torchvision.models.vgg16(weights=torchvision.models.VGG16_Weights.DEFAULT)
    11. else:
    12. exit()
    13. mymodel = InitMode("vgg16")
    14. # 修改前
    15. for name, param in mymodel.named_parameters():
    16. print(name, param.requires_grad)
    17. print("=" * 30)
    18. # 修改requires_grad
    19. for param in mymodel.parameters():
    20. param.requires_grad = False
    21. for name, param in mymodel.named_parameters():
    22. print(name, param.requires_grad)
    23. print("=" * 30)
    24. mymodel.classifier[6] = nn.Linear(4096, 10)
    25. # 修改后
    26. for name, param in mymodel.named_parameters():
    27. print(name, param.requires_grad)
    28. exit()

    结果如下:

    D:\anaconda3\envs\pytorch_gpu\python.exe D:/project/python/pytorch_gpu/test.py
    features.0.weight True
    features.0.bias True
    features.2.weight True
    features.2.bias True
    features.5.weight True
    features.5.bias True
    features.7.weight True
    features.7.bias True
    features.10.weight True
    features.10.bias True
    features.12.weight True
    features.12.bias True
    features.14.weight True
    features.14.bias True
    features.17.weight True
    features.17.bias True
    features.19.weight True
    features.19.bias True
    features.21.weight True
    features.21.bias True
    features.24.weight True
    features.24.bias True
    features.26.weight True
    features.26.bias True
    features.28.weight True
    features.28.bias True
    classifier.0.weight True
    classifier.0.bias True
    classifier.3.weight True
    classifier.3.bias True
    classifier.6.weight True
    classifier.6.bias True

    ==============================
    features.0.weight False
    features.0.bias False
    features.2.weight False
    features.2.bias False
    features.5.weight False
    features.5.bias False
    features.7.weight False
    features.7.bias False
    features.10.weight False
    features.10.bias False
    features.12.weight False
    features.12.bias False
    features.14.weight False
    features.14.bias False
    features.17.weight False
    features.17.bias False
    features.19.weight False
    features.19.bias False
    features.21.weight False
    features.21.bias False
    features.24.weight False
    features.24.bias False
    features.26.weight False
    features.26.bias False
    features.28.weight False
    features.28.bias False
    classifier.0.weight False
    classifier.0.bias False
    classifier.3.weight False
    classifier.3.bias False
    classifier.6.weight False
    classifier.6.bias False

    ==============================
    features.0.weight False
    features.0.bias False
    features.2.weight False
    features.2.bias False
    features.5.weight False
    features.5.bias False
    features.7.weight False
    features.7.bias False
    features.10.weight False
    features.10.bias False
    features.12.weight False
    features.12.bias False
    features.14.weight False
    features.14.bias False
    features.17.weight False
    features.17.bias False
    features.19.weight False
    features.19.bias False
    features.21.weight False
    features.21.bias False
    features.24.weight False
    features.24.bias False
    features.26.weight False
    features.26.bias False
    features.28.weight False
    features.28.bias False
    classifier.0.weight False
    classifier.0.bias False
    classifier.3.weight False
    classifier.3.bias False
    classifier.6.weight True
    classifier.6.bias True

    进程已结束,退出代码0
     

    从结果来看,先对模型的 requires_grad 全部赋值到False,其结果从下载的缺省值True变为Flase。

    当对某个层进行编辑后,这个层的requires_grad会自动变为True。

    还不清楚是什么原因,记录一下

  • 相关阅读:
    Chapter7.4:线性离散系统的分析与校正考研参考题
    SpringSecurity系列——持久认证(Persisting Authentication),会话管理day3-2(源于官网5.7.2版本)
    【云原生】一文带你搞懂Docker容器的核心基石Cgroups
    pytorch中meter.ClassErrorMeter()使用方法
    rust 迭代器
    Android 10以上出现的 android Permission denied 读写权限问题解决方法
    springboot+commons-pool2 连接池访问sftp
    79:第六章:开发文章服务:12:开发【撤回文章,接口】、【删除文章,接口】;(本篇博客内容,比较简单;)
    分式理想 & 对偶群 & 对偶空间
    Flink 指定 keys 的几种方法
  • 原文地址:https://blog.csdn.net/immc1979/article/details/128099907