码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 信号与系统1——Signals and Systems


    信号与系统1——Signals and Systems

    • 一、Introduction
      • 1. Signals and Systems信号与系统
        • (1) Signal信号
        • (2) System系统
      • 2. Classification of Signals信号的分类
        • (1) Continuous-time & discrete-time
          • 1) Continuous-Time signal连续时间信号
          • 2) Discrete-Time signal离散时间信号
          • 3) Relationship关系
        • (2) Even and odd signals偶奇信号
          • 1) Even signals (偶信号)
          • 2) Odd signals (奇信号)
          • 3) Even-odd decomposition of x(t)奇偶分量
          • 4) PRODUCT Rule
      • 3. Operation on Signals信号运算
        • (1) In Time Domain时域
          • 1) Time Scaling时间展缩
          • 2) Time Reflection时间反转
          • 3) Time Shifting时移
        • (2) In Amplitude幅度
          • 1) Amplitude scaling幅度缩放
          • 2) Addition加
          • 3) Multiplication乘
          • 4) Differentiation 微分
          • 5) Integration 积分
        • (3) Precedence Rule步骤
          • 1)f(t) → \rightarrow →f( α \alpha αt+ β \beta β)
          • 2)f( α \alpha αt+ β \beta β) → \rightarrow →f(t)
    • 二、Basic Time Signals基本时间信号
      • 1. Exponential Signals指数信号
        • (1) Continuous-time
        • (2) Discrete-time
      • 2. Sinusoidal Signals正弦信号
        • (1) Continuous-time
        • (2) Discrete-time
        • (3) Relation Between Sinusoidal and Complex Exponential Signals
          • 1) Complex exponential signal
          • 2) Discrete-time case
          • 3) Two-dimensional representation of the complex exponential e^jΩn^ for Ω = Π/4 and n = 0, 1...
        • (4) Exponential Damped (衰减) Sinusoidal Signals
      • 3. Step Functions阶跃信号
        • (1) Continuous-time
        • (2) Discrete-time
        • (3) Properties
          • 1) 相乘特性(单边特性)
          • 2) 表示作用区间
            • a. f(t)[u(t- t 1 t_1 t1​)-u(t- t 2 t_2 t2​)]
            • b. 加减
          • 3) 积分
      • 4. Impulse Functions冲激信号
        • (1) Discrete-time
        • (2) Continuous-time
        • (3) Properties of impulse function
          • 1) Even function偶函数
          • 2) Sifting property时移特性
          • 3) Time-scaling property展缩特性
          • 4) Sampling property取样特性
          • 5) 相乘特性
          • 6) Derivatives
          • 7) 与u(t)的关系
    • 三、Systems Classification and Properties系统分类和性质
      • 1. System Representation
      • 2. Continuous-time and Discrete-time Systems
        • (1) Continuous-time
        • (2) Discrete-time
        • (3) Moving-average system
        • (4) Representation of discrete-time operations
      • 3. Systems with and without memory
        • (1) without memory
        • (2) with memory
      • 4. Causal and Non-causal systems
        • (1) Causal
        • (2) Non-causal
      • 5. Linear and Nonlinear systems
        • (1) Linear
        • (2) Nonlinear
      • 6. Time-variant and Time-invariant Systems
        • (1) Time-invariant
        • (2) Condition for time-invariant system
      • 7. Stable systems
      • 8. Feedback systems
      • 9. Invertibility(可逆性) systems
        • (1) Continuous-time system
        • (2) Output of the second system
        • (3) Condition for invertible system

    一、Introduction

    1. Signals and Systems信号与系统

    (1) Signal信号

    A signal is formally defined as a function of one or more variables that conveys information on the
    nature of a physical phenomenon.

    (2) System系统

    A system is formally defined as an entity that manipulates one or more signals to accomplish a function, thereby yielding new signals.

    在这里插入图片描述

    在这里插入图片描述

    2. Classification of Signals信号的分类

    (1) Continuous-time & discrete-time

    1) Continuous-Time signal连续时间信号

    A continuous-time signal is defined for all time t, except at some discontinuous point.

    2) Discrete-Time signal离散时间信号

    A continuous-time signal is defined only at discrete instants of time.
    在这里插入图片描述

    3) Relationship关系

    · A discrete-time signal is often derived from a continuous-time signal by sampling (抽样) it at a uniform rate (nT)

    x[n]= x ( t ) ∣ t = n T x(t)|_{t=nT} x(t)∣t=nT​=x(nT)
    T: sampling period, n: an integer
    Continuous-time signals: x(t)
    Discrete-time signals: x[n]=x(n T s T_s Ts​), n=0, ± \pm ± 1, ± \pm ± 2, … \ldots …

    (2) Even and odd signals偶奇信号

    1) Even signals (偶信号)

    Symmetric about vertical axis: x (-t) = x (t), x [-n] = x [n] for all t

    2) Odd signals (奇信号)

    Antisymmetric about origin: x (-t) = - x (t), x [-n] = x [n] for all t

    3) Even-odd decomposition of x(t)奇偶分量

    x (t)= x e x_e xe​(t)+ x o x_o xo​(t) where x e x_e xe​(-t) = x e x_e xe​(t), x o x_o xo​(-t) = - x o x_o xo​(t)
    → \rightarrow → x e x_e xe​(t)= 1 2 \frac{1}{2} 21​[x(t)+x(-t)]
    → \rightarrow → x o x_o xo​(t)= 1 2 \frac{1}{2} 21​[x(t)-x(-t)]

    4) PRODUCT Rule

    ODD × \times × ODD → \rightarrow → EVEN
    EVEN × \times × EVEN → \rightarrow → EVEN
    EVEN × \times × ODD → \rightarrow → ODD
    ODD × \times × EVEN → \rightarrow → ODD

    ∫ − T T x ( t ) d t \int_{-T}^Tx(t)dt ∫−TT​x(t)dt=0 always of x(t) is ODD
    =0 sometimes if x(t) is EVEN
    ∫ − T T x ( t ) d t \int_{-T}^Tx(t)dt ∫−TT​x(t)dt=2 ∫ 0 T x ( t ) d t \int_{0}^Tx(t)dt ∫0T​x(t)dt for x(t) EVEN

    3. Operation on Signals信号运算

    (1) In Time Domain时域

    1) Time Scaling时间展缩

    y(t) = x (at) → \rightarrow → a>1, compressed; 0 y[n] =x [kn] , k>0, k is an integer → \rightarrow →some values lost

    2) Time Reflection时间反转

    y(t)=x(-t) → \rightarrow →The signal y(t) represents a reflected version of x(t) about t=0

    3) Time Shifting时移

    y(t)=x(t- t 0 t_0 t0​) → \rightarrow → t 0 t_0 t0​>0, 右移(shift towards right) ; t 0 t_0 t0​<0, 左移(shift towards left)
    y[n]=x[n-m] → \rightarrow → m>0, 右移(shift towards right) ;m<0, 左移(shift towards left)

    (2) In Amplitude幅度

    1) Amplitude scaling幅度缩放

    x(t) → \rightarrow → y(t)=cx(t)
    x[n] → \rightarrow → y[n]=cx[n]

    2) Addition加

    y(t) = x 1 x_1 x1​(t) + x 2 x_2 x2​(t)
    y[n] = x 1 x_1 x1​[n] + x 2 x_2 x2​[n]

    3) Multiplication乘

    y(t) = x 1 x_1 x1​(t) x 2 x_2 x2​(t)
    y[n] = x 1 x_1 x1​[n] x 2 x_2 x2​[n]

    4) Differentiation 微分

    y(t) = d d t \frac{d}{dt} dtd​x(t)

    5) Integration 积分

    y(t) = ∫ − ∞ t x ( τ ) d τ \int_{-∞}^tx(τ)dτ ∫−∞t​x(τ)dτ

    (3) Precedence Rule步骤

    1)f(t) → \rightarrow →f( α \alpha αt+ β \beta β)

    f(t) → \rightarrow →f(t+ β \beta β) → \rightarrow →f( α \alpha αt+ β \beta β) → \rightarrow → f(- α \alpha αt+ β \beta β)
    平移 → \rightarrow → 展缩 → \rightarrow → 反转

    2)f( α \alpha αt+ β \beta β) → \rightarrow →f(t)

    f(- α \alpha αt + β \beta β) → \rightarrow → f( α \alpha αt+ β \beta β) → \rightarrow → f(t+ β \beta β) → \rightarrow → f(t)
    反转 → \rightarrow → 展缩 → \rightarrow → 平移

    二、Basic Time Signals基本时间信号

    1. Exponential Signals指数信号

    (1) Continuous-time

    x(t) = Beαt, B and a are real parameters
    a. Decaying exponential, for which α < 0
    b. Growing exponential, for which α > 0
    在这里插入图片描述

    (2) Discrete-time

    x[n]=Brn , r=e α
    a. Decaying exponential, for which α < 0
    b. Growing exponential, for which α > 0
    在这里插入图片描述

    2. Sinusoidal Signals正弦信号

    (1) Continuous-time

    x (t)=A cos (ωt+φ), T= 2 Π ω \frac{2Π}{ω} ω2Π​
    x (t +T) = x(t)

    (2) Discrete-time

    x [n] =A cos (Ωn+φ)
    Periodic condition: x [n + N] =A cos (Ωn+ΩN+φ)
    → \rightarrow → ΩN=2Πm or Ω= 2 Π m ω \frac{2Πm}{ω} ω2Πm​

    (3) Relation Between Sinusoidal and Complex Exponential Signals

    1) Complex exponential signal

    Euler’s identity:ejθ=cosθ+jsinθ
    Complex exponential signal: Bejωt= A ejφejωt=A cos (ωt+φ)+j Asin (ωt+φ)
    A cos (ωt+φ)= Re {Bejωt}
    A sin (ωt+φ) = Im {Bejωt}

    2) Discrete-time case

    A cos (Ωn+φ) = Re {BejΩn}
    A sin (Ωn+φ) = Im {BejΩn}

    3) Two-dimensional representation of the complex exponential ejΩn for Ω = Π/4 and n = 0, 1…

    在这里插入图片描述

    (4) Exponential Damped (衰减) Sinusoidal Signals

    x(t)= A e-αt sin (ωt+φ), α>0
    在这里插入图片描述

    3. Step Functions阶跃信号

    (1) Continuous-time

    在这里插入图片描述

    (2) Discrete-time

    在这里插入图片描述

    (3) Properties

    1) 相乘特性(单边特性)
    x(t)u(t)= { x(t) ,t>0
      		    0,t<0
    
    • 1
    • 2
    2) 表示作用区间
    a. f(t)[u(t- t 1 t_1 t1​)-u(t- t 2 t_2 t2​)]

    Rectangular pulse脉冲信号:p(t)=u(t+ 1 2 \frac{1}{2} 21​)-u(t- 1 2 \frac{1}{2} 21​)

    在这里插入图片描述

    b. 加减
    sgn(t) function符号函数
    sgn(t)={1,t>0
           -1, t<0
           =u(t)-u(-t)
    
    • 1
    • 2
    • 3
    • 4
    3) 积分

    y(t) = ∫ − ∞ t u ( τ ) d τ \int_{-∞}^tu(τ)dτ ∫−∞t​u(τ)dτ=tu(t)=r(t) → \rightarrow → 斜坡信号

    4. Impulse Functions冲激信号

    (1) Discrete-time

     [n]=1, n=0; 0, n≠0

    (2) Continuous-time

    δ \delta δ(t)=0 for t ≠0
    ∫ − ∞ ∞ δ ( t ) d t \int_{-∞}^∞δ(t)dt ∫−∞∞​δ(t)dt=1

    (3) Properties of impulse function

    1) Even function偶函数

    δ \delta δ(-t)= δ \delta δ(t)

    2) Sifting property时移特性

    δ \delta δ(t- t 0 t_0 t0​) = 0, t ≠ t 0 t_0 t0​
    ∫ − ∞ ∞ δ ( t − t o ) d t \int_{-∞}^∞δ(t-to)dt ∫−∞∞​δ(t−to)dt=1

    3) Time-scaling property展缩特性

    δ \delta δ(at+b)= 1 a \frac{1}{a} a1​ δ \delta δ(t+ b a \frac{b}{a} ab​)

    4) Sampling property取样特性

    ∫ − ∞ ∞ x ( τ ) δ ( t ) d t \int_{-∞}^∞x(τ)δ(t)dt ∫−∞∞​x(τ)δ(t)dt=x(0)

    x(t)* δ \delta δ(t- t 0 t_0 t0​)= ∫ − ∞ ∞ x ( t ) δ ( t − t o ) d t \int_{-∞}^∞x(t)δ(t-to)dt ∫−∞∞​x(t)δ(t−to)dt=x( t 0 t_0 t0​)

    x ( t ) δ ( t − t o ) x(t)δ(t-to) x(t)δ(t−to)=x( t 0 t_0 t0​) δ \delta δ(t- t 0 t_0 t0​)

    ∑ i = − ∞ ∞ \sum_{i=-∞}^∞ ∑i=−∞∞​x(t) δ \delta δ(k)= x (0)

    5) 相乘特性

    x ( t ) δ ( t ) x(t)δ(t) x(t)δ(t)= x ( 0 ) δ ( t ) x(0)δ(t) x(0)δ(t)
    x ( t ) δ ( t − t o ) x(t)δ(t-to) x(t)δ(t−to)= x ( t o ) δ ( t − t o ) x(to)δ(t-to) x(to)δ(t−to)

    6) Derivatives

    在这里插入图片描述

    7) 与u(t)的关系

    δ(t) is the derivative of u(t): δ(t)= d d t u ( t ) \frac{d}{dt}u(t) dtd​u(t)

    u(t) is the integral of δ(t): u(t) = ∫ − ∞ t δ ( τ ) d τ \int_{-∞}^tδ(τ)dτ ∫−∞t​δ(τ)dτ

    u[n] = δ[n]+δ[n-1]+…= ∑ i = 0 ∞ \sum_{i=0}^∞ ∑i=0∞​ δ \delta δ[n-k]= ∑ i = − ∞ n \sum_{i=-∞}^n ∑i=−∞n​ δ \delta δ[m]

    δ[n]=u[n]-u[n-1]

    三、Systems Classification and Properties系统分类和性质

    1. System Representation

    在这里插入图片描述

    2. Continuous-time and Discrete-time Systems

    (1) Continuous-time

    y(t)=H{x(t)}

    (2) Discrete-time

    y[n]=H{x[n]}
    在这里插入图片描述

    (3) Moving-average system

    在这里插入图片描述
    在这里插入图片描述

    (4) Representation of discrete-time operations

    在这里插入图片描述

    3. Systems with and without memory

    (1) without memory

    A system is said to be memoryless if the output at any time depends on only the input at that same time.

    (2) with memory

    A system is said to be memory if the output at any time depends on only the input at past or in the future.

    4. Causal and Non-causal systems

    (1) Causal

    A system is said to be causal if its present value of the output signal depends only on the present or past values of the input signal.

    (2) Non-causal

    A system is said to be noncausal if its output signal depends on one or more future values of the input signal.

    5. Linear and Nonlinear systems

    (1) Linear

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    (2) Nonlinear

    6. Time-variant and Time-invariant Systems

    (1) Time-invariant

    在这里插入图片描述

    (2) Condition for time-invariant system

    在这里插入图片描述

    7. Stable systems

    A system is bounded-input/bounded-output (BIBO,有界输入有界输出) stable if for any bounded input x defined by |x|≤ k 1 k_1 k1​
    The corresponding output y is also bounded defined by |y|≤ k 2 k_2 k2​ where k 1 k_1 k1​ and k 2 k_2 k2​ are finite real constants

    8. Feedback systems

    在这里插入图片描述

    9. Invertibility(可逆性) systems

    (1) Continuous-time system

    x(t) = input; y(t) = output
    H = first system operator; H i n v _{inv} inv​ = second system operator

    (2) Output of the second system

    在这里插入图片描述
    H i n v _{inv} inv​=inverse operator

    (3) Condition for invertible system

    H i n v _{inv} inv​ H= I
    I = identity operator (单位算符)

  • 相关阅读:
    【uniapp】小程序开发:2 安装uni-ui组件库、使用pinia状态管理、自定义http请求
    8/19 cf思维+马拉车算法
    一文搞定Postman(菜鸟必看)
    ApplicationContext种类
    vscode刷leetcode使用Cookie登录
    【C++】引用做函数返回值时必须要注意
    云存储空间的动态分配技术
    单机下 Netty 如何支持百万长连接
    001计算机网络基础习题+答案+解析
    CXP 协议中upconnection 与downconnection的说明及其区别
  • 原文地址:https://blog.csdn.net/weixin_62403234/article/details/128066942
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号