设 a > b > 0 a>b>0 a>b>0,证明: a − b a < ln a b < a − b b \dfrac{a-b}{a}<\ln\dfrac ab<\dfrac{a-b}{b} aa−b<lnba<ba−b
证:
\qquad
令
f
(
x
)
=
ln
x
f(x)=\ln x
f(x)=lnx,
x
∈
(
0
,
+
∞
)
x\in(0,+\infty)
x∈(0,+∞),
x
x
x在
[
b
,
a
]
[b,a]
[b,a]上连续,在
(
b
,
a
)
(b,a)
(b,a)内可导
\qquad 由拉格朗日中值定理得, ∃ ξ ∈ ( b , a ) \exist\xi\in(b,a) ∃ξ∈(b,a),使得 f ( a ) − f ( b ) a − b = f ′ ( ξ ) \dfrac{f(a)-f(b)}{a-b}=f'(\xi) a−bf(a)−f(b)=f′(ξ)
\qquad 所以 ln a b = ln a − ln b = f ′ ( ξ ) ( a − b ) \ln\dfrac ab=\ln a-\ln b=f'(\xi)(a-b) lnba=lna−lnb=f′(ξ)(a−b)
∵ f ′ ( x ) = 1 x \qquad \because f'(x)=\dfrac{1}{x} ∵f′(x)=x1在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上是单调递减函数, b < ξ < a b<\xib<ξ<a
∴
f
′
(
a
)
<
f
′
(
ξ
)
<
f
′
(
b
)
\qquad \therefore f'(a)
\qquad 得证 a − b a < ln a b < a − b b \dfrac{a-b}{a}<\ln\dfrac ab<\dfrac{a-b}{b} aa−b<lnba<ba−b
证明:对于任何实数 a , b a,b a,b, ∣ arctan b − arctan a ∣ ≤ ∣ b − a ∣ |\arctan b-\arctan a|\leq|b-a| ∣arctanb−arctana∣≤∣b−a∣恒成立。
证:
∵
arctan
x
\qquad \because \arctan x
∵arctanx是单调递增函数
∴ \qquad \therefore ∴不妨设 a < b aa<b,即证 arctan b − arctan a ≤ b − a \arctan b-\arctan a\leq b-a arctanb−arctana≤b−a
arctan x \qquad \arctan x arctanx在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导
\qquad 由拉格朗日中值定理得 ∃ ξ ∈ ( a , b ) \exist\xi\in(a,b) ∃ξ∈(a,b),使得 arctan b − arctan a b − a ≤ ( arctan ξ ) ′ = 1 1 + ξ 2 \dfrac{\arctan b-\arctan a}{b-a}\leq (\arctan \xi)'=\dfrac{1}{1+\xi^2} b−aarctanb−arctana≤(arctanξ)′=1+ξ21
∵ 1 1 + ξ 2 ≤ 1 \qquad \because \dfrac{1}{1+\xi^2}\leq 1 ∵1+ξ21≤1
∴ arctan b − arctan a b − a ≤ 1 \qquad \therefore \dfrac{\arctan b-\arctan a}{b-a}\leq 1 ∴b−aarctanb−arctana≤1,即 arctan b − arctan a ≤ b − a \arctan b-\arctan a\leq b-a arctanb−arctana≤b−a
\qquad 得证 ∣ arctan b − arctan a ∣ ≤ ∣ b − a ∣ |\arctan b-\arctan a|\leq|b-a| ∣arctanb−arctana∣≤∣b−a∣