
0 引言
随着科技的迅速发展, 人机交互显得尤为重要。语音是语言的载体, 是人与人之间交流的重要媒介。相较于其它交流方式而言, 语音交流更加直接、便捷。近年来, 随着人机交互研究的不断深入, 语音情感识别更成为了学术界研究的热点, 其涉及到信号处理、模式识别、人工智能等相关领域。语音中除了能够传达语义信息外, 还包含了一些情感信息, 然而这些情感信息往往被人们所忽略。语音情感识别实际上是利用计算机所提取的语音信号特征来判断其属于哪一类情感。利用模式识别方法研究语音情感识别的文献较多, 朱菊霞等使用SVM算法对语音情感进行识别, 并取得了86% 的识别率。余华等使用粒子群算法优化神经网络来进行语音情感识别, 识别率较高。BP神经网络是神经网络的一种, 属于多层前馈神经网络, 与其它神经网络算法所不同的是采用了反向传播的学习算法, 不断地计算输出端的误差向回传递来进行权值调整, 从而达到误差最小的效果。
1 BP神经网络
BP神经网络算法由Rumelhart等于1988年提出, 它是一种用于前向神经网络学习训练的误差反向传播算法, 简称BP算法。它是前向神经网络的核心和精华部分, 因其网络结构容易构造, 对输入的数据没有特别要求, 同时相关理论的研究也已经成熟, 因而已经被广泛地应用于模式识别中。目前, 人工神经网络中研究最多的就是BP神经网络及其改进算法。该网络同样由输入层、隐含层、输出层组成, 典型的BP神经网络如图1所示。