内核的启动时从main.c这个文件里面的start_kernel函数开始的,这个文件在linux源码里面的init文件夹下面
下面我们来看看这个函数 这个函数很长,可以看个大概过去
- asmlinkage __visible void __init start_kernel(void)
- {
- char *command_line;
- char *after_dashes;
-
- set_task_stack_end_magic(&init_task);
- smp_setup_processor_id();
- debug_objects_early_init();
-
- cgroup_init_early();
-
- local_irq_disable();
- early_boot_irqs_disabled = true;
-
- /*
- * Interrupts are still disabled. Do necessary setups, then
- * enable them.
- */
- boot_cpu_init();
- page_address_init();
- pr_notice("%s", linux_banner);
- setup_arch(&command_line);
- /*
- * Set up the the initial canary and entropy after arch
- * and after adding latent and command line entropy.
- */
- add_latent_entropy();
- add_device_randomness(command_line, strlen(command_line));
- boot_init_stack_canary();
- mm_init_cpumask(&init_mm);
- setup_command_line(command_line);
- setup_nr_cpu_ids();
- setup_per_cpu_areas();
- smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
- boot_cpu_hotplug_init();
-
- build_all_zonelists(NULL);
- page_alloc_init();
-
- pr_notice("Kernel command line: %s\n", boot_command_line);
- parse_early_param();
- after_dashes = parse_args("Booting kernel",
- static_command_line, __start___param,
- __stop___param - __start___param,
- -1, -1, NULL, &unknown_bootoption);
- if (!IS_ERR_OR_NULL(after_dashes))
- parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
- NULL, set_init_arg);
-
- jump_label_init();
-
- /*
- * These use large bootmem allocations and must precede
- * kmem_cache_init()
- */
- setup_log_buf(0);
- vfs_caches_init_early();
- sort_main_extable();
- trap_init();
- mm_init();
-
- ftrace_init();
-
- /* trace_printk can be enabled here */
- early_trace_init();
-
- /*
- * Set up the scheduler prior starting any interrupts (such as the
- * timer interrupt). Full topology setup happens at smp_init()
- * time - but meanwhile we still have a functioning scheduler.
- */
- sched_init();
- /*
- * Disable preemption - early bootup scheduling is extremely
- * fragile until we cpu_idle() for the first time.
- */
- preempt_disable();
- if (WARN(!irqs_disabled(),
- "Interrupts were enabled *very* early, fixing it\n"))
- local_irq_disable();
- radix_tree_init();
-
- /*
- * Set up housekeeping before setting up workqueues to allow the unbound
- * workqueue to take non-housekeeping into account.
- */
- housekeeping_init();
-
- /*
- * Allow workqueue creation and work item queueing/cancelling
- * early. Work item execution depends on kthreads and starts after
- * workqueue_init().
- */
- workqueue_init_early();
-
- rcu_init();
-
- /* Trace events are available after this */
- trace_init();
-
- if (initcall_debug)
- initcall_debug_enable();
-
- context_tracking_init();
- /* init some links before init_ISA_irqs() */
- early_irq_init();
- init_IRQ();
- tick_init();
- rcu_init_nohz();
- init_timers();
- hrtimers_init();
- softirq_init();
- timekeeping_init();
- time_init();
- printk_safe_init();
- perf_event_init();
- profile_init();
- call_function_init();
- WARN(!irqs_disabled(), "Interrupts were enabled early\n");
-
- early_boot_irqs_disabled = false;
- local_irq_enable();
-
- kmem_cache_init_late();
-
- /*
- * HACK ALERT! This is early. We're enabling the console before
- * we've done PCI setups etc, and console_init() must be aware of
- * this. But we do want output early, in case something goes wrong.
- */
- console_init();
- if (panic_later)
- panic("Too many boot %s vars at `%s'", panic_later,
- panic_param);
-
- lockdep_init();
-
- /*
- * Need to run this when irqs are enabled, because it wants
- * to self-test [hard/soft]-irqs on/off lock inversion bugs
- * too:
- */
- locking_selftest();
-
- /*
- * This needs to be called before any devices perform DMA
- * operations that might use the SWIOTLB bounce buffers. It will
- * mark the bounce buffers as decrypted so that their usage will
- * not cause "plain-text" data to be decrypted when accessed.
- */
- mem_encrypt_init();
-
- #ifdef CONFIG_BLK_DEV_INITRD
- if (initrd_start && !initrd_below_start_ok &&
- page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
- pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
- page_to_pfn(virt_to_page((void *)initrd_start)),
- min_low_pfn);
- initrd_start = 0;
- }
- #endif
- kmemleak_init();
- setup_per_cpu_pageset();
- numa_policy_init();
- acpi_early_init();
- if (late_time_init)
- late_time_init();
- sched_clock_init();
- calibrate_delay();
- pid_idr_init();
- anon_vma_init();
- #ifdef CONFIG_X86
- if (efi_enabled(EFI_RUNTIME_SERVICES))
- efi_enter_virtual_mode();
- #endif
- thread_stack_cache_init();
- cred_init();
- fork_init();
- proc_caches_init();
- uts_ns_init();
- buffer_init();
- key_init();
- security_init();
- dbg_late_init();
- vfs_caches_init();
- pagecache_init();
- signals_init();
- seq_file_init();
- proc_root_init();
- nsfs_init();
- cpuset_init();
- cgroup_init();
- taskstats_init_early();
- delayacct_init();
-
- check_bugs();
-
- acpi_subsystem_init();
- arch_post_acpi_subsys_init();
- sfi_init_late();
-
- /* Do the rest non-__init'ed, we're now alive */
- arch_call_rest_init();
- }
【文章福利】小编推荐自己的Linux内核技术交流群: 【977878001】整理一些个人觉得比较好得学习书籍、视频资料共享在群文件里面,有需要的可以自行添加哦!!!前100进群领取,额外赠送一份 价值699的内核资料包(含视频教程、电子书、实战项目及代码)

内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料
学习直通车:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈
这个函数里面我们会看到有很多的各种init,也就是初始化,我们只说几个重点操作
首先来看下这个函数set_task_stack_end_magic(&init_task);
在linux里面所有的进程都是由父进程创建而来,所以说在启动内核的时候需要有个祖先进程,这个进程是系统创建的
第一个进程,我们称为0号进程,它是唯一一个没有通过fork或者kernel_thread的进程
然后就是初始化系统调用,对应的函数就是trap_init();这里面设置了很多中断门,用于处理各种中断
系统调用也是通过发送中断的方式进行的。
接下来就是内存管理模块的初始化,对应的函数是mm_init();
然后就是初始化任务调度,对应的函数就是sched_init();
这个任务调度是干嘛用的呢?就是操作系统协调进程和cpu,比如说分配哪个进程在cpu上运行呀,
在比如说你这个进程在cpu上运行时间过长了,然后操作系统就会把你踢下去,换另一个进程在cpu上运行。
到了这个preempt_disable();函数,这个函数的意思就是在这个函数运行以后就禁止被中断
也就是说在这个函数运行后面,如果没有主动让出cpu,那么其他进程是无法抢占他的。
然后看下这个tick_init();这个函数是时钟初始化,这个时钟的概念是什么意思呢?
计算机会每隔一段时间周期通知操作系统,就像时钟一样,滴答滴答,每滴答一下就是一个时间周期过去了,
通知操作系统后,操作系统会看下当前在cpu上运行的进程运行时间是否过长,如果过长就标识该进程为可抢占
然后在某些时机下会切掉该进程,换下一个进程。
最后start_kernel()调用的是rest_init()用来初始化其他方面,这里面做了好多事情
- noinline void __ref rest_init(void)
- {
- struct task_struct *tsk;
- int pid;
-
- rcu_scheduler_starting();
- /*
- * We need to spawn init first so that it obtains pid 1, however
- * the init task will end up wanting to create kthreads, which, if
- * we schedule it before we create kthreadd, will OOPS.
- */
- pid = kernel_thread(kernel_init, NULL, CLONE_FS);
- /*
- * Pin init on the boot CPU. Task migration is not properly working
- * until sched_init_smp() has been run. It will set the allowed
- * CPUs for init to the non isolated CPUs.
- */
- rcu_read_lock();
- tsk = find_task_by_pid_ns(pid, &init_pid_ns);
- set_cpus_allowed_ptr(tsk, cpumask_of(smp_processor_id()));
- rcu_read_unlock();
-
- numa_default_policy();
- pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
- rcu_read_lock();
- kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
- rcu_read_unlock();
-
- /*
- * Enable might_sleep() and smp_processor_id() checks.
- * They cannot be enabled earlier because with CONFIG_PREEMPT=y
- * kernel_thread() would trigger might_sleep() splats. With
- * CONFIG_PREEMPT_VOLUNTARY=y the init task might have scheduled
- * already, but it's stuck on the kthreadd_done completion.
- */
- system_state = SYSTEM_SCHEDULING;
-
- complete(&kthreadd_done);
-
- /*
- * The boot idle thread must execute schedule()
- * at least once to get things moving:
- */
- schedule_preempt_disabled();
- /* Call into cpu_idle with preempt disabled */
- cpu_startup_entry(CPUHP_ONLINE);
- }
首先调用kernel_thread()函数,用来创建用户态的第一个进程,这个进程是所有用户态进程的祖先进程,我们称为1号进程
这个一号进程进入用户态以后,开枝散叶,创建了很多子进程,子进程又创建子进程,就形成了一颗进程树。
一旦有了用户进程,就需要划分资源了,比如说用户态的进程要想使用网卡发送数据,这个时候不能直接让用户态进程调用网卡
而是通过操作系统提供的系统调用函数,给进程发送数据,发送成功以后在返回到用户态进程,通知进程处理结果,也就是封装了
底层实现,用户态进程想要实现什么功能,直接调用系统调用就可以了,在用户态进程进行系统调用时,操作系统会把当前该进程的
参数都保存到寄存器里面,如果有对寄存器不懂的,就把寄存器想象成变量,变量是编程语言存放数据的,那么寄存器就是cpu用来存放数据的东西,
等到系统调用从内核态返回到用户态的时候,会恢复当时保存的寄存器里面的数据,继续运行。
这个过程就是这样的,用户态-》系统调用-》保存寄存器-》内核态执行系统调用-》恢复寄存器-》返回用户态 接着运行

然后接着说这个一号进程启动过程,现在这个进程还是在内核态的,那么要怎么把它搞到用户态里面的,
一般都是从用户态到内核态在返回到用户态,很少见过直接从内核态开始然后到用户态的
看下下面这个代码
- void
- start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
- {
- set_user_gs(regs, 0);
- regs->fs = 0;
- regs->ds = __USER_DS;
- regs->es = __USER_DS;
- regs->ss = __USER_DS;
- regs->cs = __USER_CS;
- regs->ip = new_ip;
- regs->sp = new_sp;
- regs->flags = X86_EFLAGS_IF;
- force_iret();
- }
- EXPORT_SYMBOL_GPL(start_thread);
创建进程的这函数最后会有这么一个函数也就是start_thread(),这里面把各个寄存器都设置为了_USER,啥意思呢,里面将用户态的代码段CS设置为_USER_CS,将用户态的数据段DS设置为_USER_DS,
以及指令指针寄存器IP,栈顶指针SP,最后的force_iret();是用来恢复寄存器的,按理来说应该恢复在系统调用的时候保存的寄存器,这里面恢复的其实就是上面设置的寄存器。CS和指令指针寄存器IP恢复了,
指向用户态下一个要执行的语句,DS和函数栈指针SP也被恢复了,指向用户态函数栈的栈顶,所以,下一条指令就从用户态开始了。
用户态的祖先进程创建完了,那么内核态有没有一个祖先进程呢?
有的,rest_init第二大事情就是第三个进程,也就是2号进程。